Neural network integrated circuits with single-block mixed-signal arrays

H. Djahanshahi, M. Ahmadi, G. Jullien, W. Miller
{"title":"Neural network integrated circuits with single-block mixed-signal arrays","authors":"H. Djahanshahi, M. Ahmadi, G. Jullien, W. Miller","doi":"10.1142/S0218126698000377","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and implementation of a family of mixed-signal neural network integrated circuits for general and application-specific purposes. Regular arrays of a nonlinearly-loaded multiplier block form the core of multilayer neural networks. Input-output circuitry and network size, however, vary depending on design applications. Some features of the present architecture are highlighted through experimental study, namely, low characteristic variations and self-scaling property of neurons and reduced interconnection problems and areas on silicon. Other design issues such as supply voltage reduction and pin limitations are discussed together with fabrication test results.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218126698000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the design and implementation of a family of mixed-signal neural network integrated circuits for general and application-specific purposes. Regular arrays of a nonlinearly-loaded multiplier block form the core of multilayer neural networks. Input-output circuitry and network size, however, vary depending on design applications. Some features of the present architecture are highlighted through experimental study, namely, low characteristic variations and self-scaling property of neurons and reduced interconnection problems and areas on silicon. Other design issues such as supply voltage reduction and pin limitations are discussed together with fabrication test results.
单块混合信号阵列的神经网络集成电路
本文讨论了一种通用和专用混合信号神经网络集成电路的设计和实现。非线性加载乘法器块的规则数组构成多层神经网络的核心。然而,输入输出电路和网络大小因设计应用而异。通过实验研究,突出了该架构的一些特点,即神经元的特性变化和自缩放性低,减少了硅上的互连问题和面积。其他设计问题,如电源电压降低和引脚限制,讨论与制造测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信