Selection method of key stability features of power grid based on improved ant colony algorithm

G. Lu, Lulu Zhang, Jing Ma, H. Dai, Yawei Wei, Bin Wang, Chen Shi, Jun Lu
{"title":"Selection method of key stability features of power grid based on improved ant colony algorithm","authors":"G. Lu, Lulu Zhang, Jing Ma, H. Dai, Yawei Wei, Bin Wang, Chen Shi, Jun Lu","doi":"10.1117/12.2680566","DOIUrl":null,"url":null,"abstract":"With the continuous advancement of smart grid and the rapid development of computer and information technology, massive amounts of redundant and noisy information are connected to the power grid. Therefore, this paper proposes a key stable feature selection method based on improved ant colony algorithm. First, use the artificial intelligence model to solve the optimal number of key features. Then use Filter based on the minimum redundancy-maximal relevance (mRMR) algorithm and Wrapper based on the improved ant colony algorithm to select the optimal key feature subset in two stages. Finally, example analysis with IEEE39 nodes system is used to verify the availability and effectiveness of the selection method.","PeriodicalId":201466,"journal":{"name":"Symposium on Advances in Electrical, Electronics and Computer Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Advances in Electrical, Electronics and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2680566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous advancement of smart grid and the rapid development of computer and information technology, massive amounts of redundant and noisy information are connected to the power grid. Therefore, this paper proposes a key stable feature selection method based on improved ant colony algorithm. First, use the artificial intelligence model to solve the optimal number of key features. Then use Filter based on the minimum redundancy-maximal relevance (mRMR) algorithm and Wrapper based on the improved ant colony algorithm to select the optimal key feature subset in two stages. Finally, example analysis with IEEE39 nodes system is used to verify the availability and effectiveness of the selection method.
基于改进蚁群算法的电网关键稳定性特征选择方法
随着智能电网的不断推进和计算机信息技术的快速发展,大量的冗余和噪声信息接入电网。为此,本文提出了一种基于改进蚁群算法的关键稳定特征选择方法。首先,利用人工智能模型求解关键特征的最优数量。然后利用基于最小冗余-最大关联(mRMR)算法的Filter算法和基于改进蚁群算法的Wrapper算法,分两个阶段选择最优关键特征子集。最后,通过IEEE39节点系统的实例分析,验证了该选择方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信