Theory and Use Case of Game-theoretic Lexical Link Analysis

Ying Zhao, Charles C. Zhou, Sihui Huang
{"title":"Theory and Use Case of Game-theoretic Lexical Link Analysis","authors":"Ying Zhao, Charles C. Zhou, Sihui Huang","doi":"10.1145/3341161.3343706","DOIUrl":null,"url":null,"abstract":"We demonstrate a machine learning method, namely lexical link analysis (LLA), which can be used to discover high-value information from financial data. LLA is an unsupervised learning method that does not require manually labeled training data. We also demonstrate how to form LLA in a game-theoretic framework. We show that with game theory: high-value information selected by LLA reaches a Nash equilibrium by superpositioning popular and anomalous information and at the same time generates high social welfare, therefore containing higher intrinsic value. We show the results of LLA of two sets of financial data validating and correlating with the ground truth.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We demonstrate a machine learning method, namely lexical link analysis (LLA), which can be used to discover high-value information from financial data. LLA is an unsupervised learning method that does not require manually labeled training data. We also demonstrate how to form LLA in a game-theoretic framework. We show that with game theory: high-value information selected by LLA reaches a Nash equilibrium by superpositioning popular and anomalous information and at the same time generates high social welfare, therefore containing higher intrinsic value. We show the results of LLA of two sets of financial data validating and correlating with the ground truth.
博弈论词法联系分析的理论与用例
我们展示了一种机器学习方法,即词法链接分析(LLA),可用于从财务数据中发现高价值信息。LLA是一种不需要人工标记训练数据的无监督学习方法。我们还演示了如何在博弈论框架下形成LLA。利用博弈论表明:LLA选择的高价值信息通过叠加流行信息和异常信息达到纳什均衡,同时产生较高的社会福利,因此包含更高的内在价值。我们展示了两组财务数据的LLA结果验证并与基础事实相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信