A Bound for the Diameter of Random Hyperbolic Graphs

Marcos A. Kiwi, D. Mitsche
{"title":"A Bound for the Diameter of Random Hyperbolic Graphs","authors":"Marcos A. Kiwi, D. Mitsche","doi":"10.1137/1.9781611973761.3","DOIUrl":null,"url":null,"abstract":"Random hyperbolic graphs were recently introduced by Krioukov et. al. [KPKVB10] as a model for large networks. Gugelmann, Panagiotou, and Peter [GPP12] then initiated the rigorous study of random hyperbolic graphs using the following model: for $\\alpha> \\tfrac{1}{2}$, $C\\in\\mathbb{R}$, $n\\in\\mathbb{N}$, set $R=2\\ln n+C$ and build the graph $G=(V,E)$ with $|V|=n$ as follows: For each $v\\in V$, generate i.i.d. polar coordinates $(r_{v},\\theta_{v})$ using the joint density function $f(r,\\theta)$, with $\\theta_{v}$ chosen uniformly from $[0,2\\pi)$ and $r_{v}$ with density $f(r)=\\frac{\\alpha\\sinh(\\alpha r)}{\\cosh(\\alpha R)-1}$ for $0\\leq r< R$. Then, join two vertices by an edge, if their hyperbolic distance is at most $R$. We prove that in the range $\\tfrac{1}{2} < \\alpha < 1$ a.a.s. for any two vertices of the same component, their graph distance is $O(\\log^{C_0+1+o(1)}n)$, where $C_0=2/(\\tfrac{1}{2}-\\frac{3}{4}\\alpha+\\tfrac{\\alpha^2}{4})$, thus answering a question raised in [GPP12] concerning the diameter of such random graphs. As a corollary from our proof we obtain that the second largest component has size $O(\\log^{2C_0+1+o(1)}n)$, thus answering a question of Bode, Fountoulakis and M\\\"{u}ller [BFM13]. We also show that a.a.s. there exist isolated components forming a path of length $\\Omega(\\log n)$, thus yielding a lower bound on the size of the second largest component.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973761.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Random hyperbolic graphs were recently introduced by Krioukov et. al. [KPKVB10] as a model for large networks. Gugelmann, Panagiotou, and Peter [GPP12] then initiated the rigorous study of random hyperbolic graphs using the following model: for $\alpha> \tfrac{1}{2}$, $C\in\mathbb{R}$, $n\in\mathbb{N}$, set $R=2\ln n+C$ and build the graph $G=(V,E)$ with $|V|=n$ as follows: For each $v\in V$, generate i.i.d. polar coordinates $(r_{v},\theta_{v})$ using the joint density function $f(r,\theta)$, with $\theta_{v}$ chosen uniformly from $[0,2\pi)$ and $r_{v}$ with density $f(r)=\frac{\alpha\sinh(\alpha r)}{\cosh(\alpha R)-1}$ for $0\leq r< R$. Then, join two vertices by an edge, if their hyperbolic distance is at most $R$. We prove that in the range $\tfrac{1}{2} < \alpha < 1$ a.a.s. for any two vertices of the same component, their graph distance is $O(\log^{C_0+1+o(1)}n)$, where $C_0=2/(\tfrac{1}{2}-\frac{3}{4}\alpha+\tfrac{\alpha^2}{4})$, thus answering a question raised in [GPP12] concerning the diameter of such random graphs. As a corollary from our proof we obtain that the second largest component has size $O(\log^{2C_0+1+o(1)}n)$, thus answering a question of Bode, Fountoulakis and M\"{u}ller [BFM13]. We also show that a.a.s. there exist isolated components forming a path of length $\Omega(\log n)$, thus yielding a lower bound on the size of the second largest component.
随机双曲图直径的一个界
随机双曲图最近由Krioukov等人[KPKVB10]引入,作为大型网络的模型。Gugelmann, Panagiotou, and Peter [GPP12]随后开始了对随机双曲图的严谨研究,使用以下模型:对于$\alpha> \tfrac{1}{2}$, $C\in\mathbb{R}$, $n\in\mathbb{N}$,设置$R=2\ln n+C$,用$|V|=n$构建图$G=(V,E)$,如下所示:对于每个$v\in V$,使用联合密度函数$f(r,\theta)$生成i.i.d极坐标$(r_{v},\theta_{v})$,其中$\theta_{v}$统一从$[0,2\pi)$和$r_{v}$中选择,$0\leq r< R$的密度为$f(r)=\frac{\alpha\sinh(\alpha r)}{\cosh(\alpha R)-1}$。然后,用一条边连接两个顶点,如果它们的双曲距离不超过$R$。我们证明了在$\tfrac{1}{2} < \alpha < 1$ a.a.s.范围内,对于任意两个相同分量的顶点,它们的图距离为$O(\log^{C_0+1+o(1)}n)$,其中$C_0=2/(\tfrac{1}{2}-\frac{3}{4}\alpha+\tfrac{\alpha^2}{4})$,从而回答了[GPP12]中关于这种随机图的直径的问题。作为我们证明的一个推论,我们得到第二大分量的大小为$O(\log^{2C_0+1+o(1)}n)$,从而回答了Bode, Fountoulakis和m ller [BFM13]的问题。我们还表明,a.a.s.存在形成长度为$\Omega(\log n)$的路径的孤立分量,从而得出第二大分量的大小的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信