{"title":"Dynamic knowledge graph completion through time-aware relational message passing","authors":"Amirhossein Baqinejadqazvini, Saedeh Tahery, Saeed Farzi","doi":"10.1109/CSICC58665.2023.10105381","DOIUrl":null,"url":null,"abstract":"As the structure of knowledge graphs may vary over time, static knowledge graph completion methods do not deal with time-varying knowledge graphs. However, examining the paths between entities and entities' context information can lead to more accurate completion methods. This paper attempts to complete dynamic (time-varying) knowledge graphs by combining time-aware relational paths and relational context. The proposed model can improve dynamic knowledge graph completion methods by leveraging neural networks. Experimental results conducted on two standard datasets, ICEWS14 and ICEWS05-15, indicate our model's superiority in terms of Mean Reciprocal Rank (MRR) and Hit@k over its well-known counterparts, such as DE-TransE and DE-DistMult.","PeriodicalId":127277,"journal":{"name":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","volume":"13 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC58665.2023.10105381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As the structure of knowledge graphs may vary over time, static knowledge graph completion methods do not deal with time-varying knowledge graphs. However, examining the paths between entities and entities' context information can lead to more accurate completion methods. This paper attempts to complete dynamic (time-varying) knowledge graphs by combining time-aware relational paths and relational context. The proposed model can improve dynamic knowledge graph completion methods by leveraging neural networks. Experimental results conducted on two standard datasets, ICEWS14 and ICEWS05-15, indicate our model's superiority in terms of Mean Reciprocal Rank (MRR) and Hit@k over its well-known counterparts, such as DE-TransE and DE-DistMult.