Global Hierarchical Attention for 3D Point Cloud Analysis

Dan Jia, Alexander Hermans, Bastian Leibe
{"title":"Global Hierarchical Attention for 3D Point Cloud Analysis","authors":"Dan Jia, Alexander Hermans, Bastian Leibe","doi":"10.48550/arXiv.2208.03791","DOIUrl":null,"url":null,"abstract":". We propose a new attention mechanism, called Global Hierarchical Attention (GHA), for 3D point cloud analysis. GHA approximates the regular global dot-product attention via a series of coarsening and interpolation operations over multiple hierarchy levels. The advantage of GHA is two-fold. First, it has linear complexity with respect to the number of points, enabling the processing of large point clouds. Second, GHA inherently possesses the inductive bias to focus on spatially close points, while retaining the global connectivity among all points. Combined with a feedforward network, GHA can be inserted into many existing network architectures. We experiment with multiple baseline networks and show that adding GHA consistently improves performance across different tasks and datasets. For the task of semantic segmentation, GHA gives a +1.7% mIoU increase to the MinkowskiEngine baseline on ScanNet. For the 3D object detection task, GHA improves the CenterPoint baseline by +0.5% mAP on the nuScenes dataset, and the 3DETR baseline by +2.1% mAP 25 and +1.5% mAP 50 on ScanNet.","PeriodicalId":221267,"journal":{"name":"German Conference on Pattern Recognition","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We propose a new attention mechanism, called Global Hierarchical Attention (GHA), for 3D point cloud analysis. GHA approximates the regular global dot-product attention via a series of coarsening and interpolation operations over multiple hierarchy levels. The advantage of GHA is two-fold. First, it has linear complexity with respect to the number of points, enabling the processing of large point clouds. Second, GHA inherently possesses the inductive bias to focus on spatially close points, while retaining the global connectivity among all points. Combined with a feedforward network, GHA can be inserted into many existing network architectures. We experiment with multiple baseline networks and show that adding GHA consistently improves performance across different tasks and datasets. For the task of semantic segmentation, GHA gives a +1.7% mIoU increase to the MinkowskiEngine baseline on ScanNet. For the 3D object detection task, GHA improves the CenterPoint baseline by +0.5% mAP on the nuScenes dataset, and the 3DETR baseline by +2.1% mAP 25 and +1.5% mAP 50 on ScanNet.
三维点云分析的全局分层关注
. 我们提出了一种新的注意机制,称为全局分层注意(GHA),用于三维点云分析。GHA通过在多个层次上的一系列粗化和插值操作来近似规则的全局点积注意力。GHA的优势是双重的。首先,它对点的数量具有线性复杂度,可以处理大型点云。其次,GHA具有固有的归纳倾向,即关注空间上相近的点,同时保持所有点之间的全局连通性。结合前馈网络,GHA可以插入到许多现有的网络体系结构中。我们对多个基线网络进行了实验,并表明添加GHA可以持续提高不同任务和数据集的性能。对于语义分割任务,GHA使MinkowskiEngine在ScanNet上的基线增加了1.7% mIoU。对于3D目标检测任务,GHA在nuScenes数据集上将CenterPoint基线提高了+0.5% mAP,在ScanNet上将3DETR基线提高了+2.1% mAP 25和+1.5% mAP 50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信