How many coccoliths are there in a coccosphere of the extant coccolithophorids? A compilation.

Tien-Nan Yang, K. Wei
{"title":"How many coccoliths are there in a coccosphere of the extant coccolithophorids? A compilation.","authors":"Tien-Nan Yang, K. Wei","doi":"10.58998/jnr2275","DOIUrl":null,"url":null,"abstract":"Introduction As an important component in the biogeochemical cycling of carbon and sulphur, and of global climate change (Westbroek et al., 1993), production of coccolithophorids and their fluxes in the ocean have drawn much attention in recent years (e.g. Kleijne, 1991; Honjo, 1996; Andruleit, 1997; Ziveri & Broerse, 1997; Broerse et al., 2000a, b, c; Jordan & Winter, 2000; Sprengel et al., 2000; Ziveri & Thunell, 2000; Cortes et al., 2001; Haidar & Thierstein, 2001; Yang et al., 2001 ). To be able to quantitatively estimate the flux of coccolithophorids in the ocean system, it is often desirable to convert counts of coccoliths into coccospheres, or vice versa. For example, Kleijne (1991) and Knappertsbusch (1993) documented the distribution of standing crops of coccospheres of holococcolithophorids in the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean, and of coccolithophorids in the Mediterranean Sea, respectively, by converting the counted coccoliths to coccospheres using existing data of coccolith/coccosphere ratios. More recently, Broerse et al. (2000a, b, c) and Ziveri & Thunell (2000) compiled coccolith and coccolithophorid data, and converted the data eventually into carbonate mass flux, based upon the coccolith mass estimates ofYoung & Ziveri (2000). The conversions in these previous studies, however, were applied to limited numbers of species, based upon available data from published literature. To facilitate a more complete quantitative study of coccolithophorid standing crops, and their contribution to carbonate flux, not only ratios of coccoliths/coccosphere of all species needed to be documented, but also some basic questions needed to be addressed, for instance, is the ratio shown by each taxon constant? If not, does the ratio vary with different oceanographic settings, or is it solely a function of ontogenetic development? Furthermore, for some dimorphic and dithecate coccospheres, the number of different kinds of coccoliths should be converted separately depending upon whether the coccosphere is complete or not. Various functions of coccoliths have been hypothesised, including protection, biochemical convenience, flotation and light-regulation (see Young, 1994 for review, and references therein). Intraspecific variation is a notable phenomenon in cultured Emiliania huxleyi (Linschooten et al., 1991). They found that new daughter-cells were covered with an average of 8-10 coccoliths, but the number increased to 15-20 before the next cell-division. The number of coccoliths also varies with nutrient availability. Linschooten et al. (1991)","PeriodicalId":186533,"journal":{"name":"Journal of Nannoplankton Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nannoplankton Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58998/jnr2275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Introduction As an important component in the biogeochemical cycling of carbon and sulphur, and of global climate change (Westbroek et al., 1993), production of coccolithophorids and their fluxes in the ocean have drawn much attention in recent years (e.g. Kleijne, 1991; Honjo, 1996; Andruleit, 1997; Ziveri & Broerse, 1997; Broerse et al., 2000a, b, c; Jordan & Winter, 2000; Sprengel et al., 2000; Ziveri & Thunell, 2000; Cortes et al., 2001; Haidar & Thierstein, 2001; Yang et al., 2001 ). To be able to quantitatively estimate the flux of coccolithophorids in the ocean system, it is often desirable to convert counts of coccoliths into coccospheres, or vice versa. For example, Kleijne (1991) and Knappertsbusch (1993) documented the distribution of standing crops of coccospheres of holococcolithophorids in the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean, and of coccolithophorids in the Mediterranean Sea, respectively, by converting the counted coccoliths to coccospheres using existing data of coccolith/coccosphere ratios. More recently, Broerse et al. (2000a, b, c) and Ziveri & Thunell (2000) compiled coccolith and coccolithophorid data, and converted the data eventually into carbonate mass flux, based upon the coccolith mass estimates ofYoung & Ziveri (2000). The conversions in these previous studies, however, were applied to limited numbers of species, based upon available data from published literature. To facilitate a more complete quantitative study of coccolithophorid standing crops, and their contribution to carbonate flux, not only ratios of coccoliths/coccosphere of all species needed to be documented, but also some basic questions needed to be addressed, for instance, is the ratio shown by each taxon constant? If not, does the ratio vary with different oceanographic settings, or is it solely a function of ontogenetic development? Furthermore, for some dimorphic and dithecate coccospheres, the number of different kinds of coccoliths should be converted separately depending upon whether the coccosphere is complete or not. Various functions of coccoliths have been hypothesised, including protection, biochemical convenience, flotation and light-regulation (see Young, 1994 for review, and references therein). Intraspecific variation is a notable phenomenon in cultured Emiliania huxleyi (Linschooten et al., 1991). They found that new daughter-cells were covered with an average of 8-10 coccoliths, but the number increased to 15-20 before the next cell-division. The number of coccoliths also varies with nutrient availability. Linschooten et al. (1991)
现存的球粒虫的球粒球中有多少颗球粒?一个编译。
作为碳和硫的生物地球化学循环以及全球气候变化的重要组成部分(Westbroek et al., 1993),球石藻的产生及其在海洋中的通量近年来受到了广泛关注(例如Kleijne, 1991;Honjo, 1996;Andruleit, 1997;Ziveri & Broerse, 1997;Broerse等人,2000a, b, c;Jordan & Winter, 2000;Sprengel et al., 2000;Ziveri & Thunell, 2000;Cortes等人,2001;Haidar & Thierstein, 2001;Yang等人,2001)。为了能够定量地估计海洋系统中球石藻的通量,通常需要将球石藻的计数转换为球石藻的计数,反之亦然。例如,Kleijne(1991)和Knappertsbusch(1993)分别记录了印度洋、红海、地中海和北大西洋的全球粒石虫卵球的分布,以及地中海的球粒石虫卵球的分布,方法是利用现有的球粒石/球粒球比率数据将已计数的球粒石转换为球粒球。最近,Broerse等人(2000年a、b、c)和Ziveri & Thunell(2000年)根据young & Ziveri(2000年)的球岩石质量估计,汇编了球岩石和球岩石类数据,并最终将数据转换为碳酸盐质量通量。然而,基于已发表文献的现有数据,这些先前研究中的转换仅适用于有限数量的物种。为了更完整地定量研究球粒石常生作物及其对碳酸盐通量的贡献,不仅需要记录所有物种的球粒石/球粒球的比率,还需要解决一些基本问题,例如,每个分类单元所显示的比率是否恒定?如果不是,这个比率是否随不同的海洋环境而变化,或者它仅仅是个体发育的一个功能?此外,对于某些二态和片形球球,不同种类球球的数量应根据球球是否完整而单独转换。人们假设了球石的各种功能,包括保护、生化便利、浮选和光调节(见Young, 1994年的评论和其中的参考文献)。种内变异是养殖赫胥黎Emiliania huxleyi的一个显著现象(Linschooten et al., 1991)。他们发现,新生的女儿细胞平均覆盖8-10个球粒,但在下一次细胞分裂之前,球粒的数量增加到15-20个。球粒的数量也随营养物质的可用性而变化。Linschooten et al. (1991)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信