A unified framework for recommendations based on quaternary semantic analysis

Wei Chen, W. Hsu, M. Lee
{"title":"A unified framework for recommendations based on quaternary semantic analysis","authors":"Wei Chen, W. Hsu, M. Lee","doi":"10.1145/2009916.2010052","DOIUrl":null,"url":null,"abstract":"Social network systems such as FaceBook and YouTube have played a significant role in capturing both explicit and implicit user preferences for different items in the form of ratings and tags. This forms a quaternary relationship among users, items, tags and ratings. Existing systems have utilized only ternary relationships such as users-items-ratings, or users-items-tags to derive their recommendations. In this paper, we show that ternary relationships are insufficient to provide accurate recommendations. Instead, we model the quaternary relationship among users, items, tags and ratings as a 4-order tensor and cast the recommendation problem as a multi-way latent semantic analysis problem. A unified framework for user recommendation, item recommendation, tag recommendation and item rating prediction is proposed. The results of extensive experiments performed on a real world dataset demonstrate that our unified framework outperforms the state-of-the-art techniques in all the four recommendation tasks.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Social network systems such as FaceBook and YouTube have played a significant role in capturing both explicit and implicit user preferences for different items in the form of ratings and tags. This forms a quaternary relationship among users, items, tags and ratings. Existing systems have utilized only ternary relationships such as users-items-ratings, or users-items-tags to derive their recommendations. In this paper, we show that ternary relationships are insufficient to provide accurate recommendations. Instead, we model the quaternary relationship among users, items, tags and ratings as a 4-order tensor and cast the recommendation problem as a multi-way latent semantic analysis problem. A unified framework for user recommendation, item recommendation, tag recommendation and item rating prediction is proposed. The results of extensive experiments performed on a real world dataset demonstrate that our unified framework outperforms the state-of-the-art techniques in all the four recommendation tasks.
基于四元语义分析的推荐统一框架
FaceBook和YouTube等社交网络系统在以评分和标签的形式捕捉用户对不同项目的显性和隐性偏好方面发挥了重要作用。这就形成了用户、商品、标签和评级之间的第四元关系。现有系统仅利用三元关系(如用户-项目-评级或用户-项目-标签)来获得推荐。在本文中,我们证明三元关系不足以提供准确的推荐。相反,我们将用户、项目、标签和评分之间的四元关系建模为一个四阶张量,并将推荐问题转换为一个多路潜在语义分析问题。提出了用户推荐、商品推荐、标签推荐和商品评级预测的统一框架。在真实世界数据集上进行的大量实验结果表明,我们的统一框架在所有四个推荐任务中都优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信