Machine Learning @ Amazon

R. Rastogi
{"title":"Machine Learning @ Amazon","authors":"R. Rastogi","doi":"10.1145/2778865.2778867","DOIUrl":null,"url":null,"abstract":"In this talk, I will first provide an overview of the key Machine Learning (ML) applications we are developing at Amazon. I will then describe a matrix factorization model that we have developed for making product recommendations âĂŞ the salient characteristics of the model are: (1) It uses a Bayesian approach to handle data sparsity, (2) It leverages user and item features to handle the cold start problem, and (3) It introduces latent variables to handle multiple personas associated with a user account (e.g. family members). Our experimental results with synthetic and real-life datasets show that leveraging user and item features, and incorporating user personas enables our model to provide lower RMSE and perplexity compared to baselines.","PeriodicalId":116839,"journal":{"name":"Proceedings of the 2nd IKDD Conference on Data Sciences","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IKDD Conference on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2778865.2778867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this talk, I will first provide an overview of the key Machine Learning (ML) applications we are developing at Amazon. I will then describe a matrix factorization model that we have developed for making product recommendations âĂŞ the salient characteristics of the model are: (1) It uses a Bayesian approach to handle data sparsity, (2) It leverages user and item features to handle the cold start problem, and (3) It introduces latent variables to handle multiple personas associated with a user account (e.g. family members). Our experimental results with synthetic and real-life datasets show that leveraging user and item features, and incorporating user personas enables our model to provide lower RMSE and perplexity compared to baselines.
机器学习@ Amazon
在这次演讲中,我将首先概述我们在亚马逊开发的关键机器学习(ML)应用程序。然后,我将描述我们为产品推荐开发的矩阵分解模型âĂŞ该模型的显著特征是:(1)它使用贝叶斯方法来处理数据稀疏性,(2)它利用用户和项目特征来处理冷启动问题,(3)它引入潜在变量来处理与用户帐户相关的多个角色(例如家庭成员)。我们对合成数据集和真实数据集的实验结果表明,利用用户和物品特征,并结合用户角色,使我们的模型能够提供比基线更低的RMSE和困惑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信