The Introduction of Extrapolated Block Adams Moulton Methods for Solving First-order Delay Differential Equations

C. Chibuisi, B. Osu, S. Ihedioha, C. Olunkwa, I. H. Onyekachukwu
{"title":"The Introduction of Extrapolated Block Adams Moulton Methods for Solving First-order Delay Differential Equations","authors":"C. Chibuisi, B. Osu, S. Ihedioha, C. Olunkwa, I. H. Onyekachukwu","doi":"10.22377/ajms.v5i1.307","DOIUrl":null,"url":null,"abstract":"In this paper, the discrete schemes of extrapolated block Adams Moulton methods were obtained through the continuous formulation of the linear multistep collocation method by matrix inversion approach for the numerical solutions of first-order delay differential equations (DDEs) without the use of interpolation techniques in evaluating the delay term. The delay term was computed by a valid idea of sequence. The advantages, convergence, stability analysis, and central processing unit time at a constant step size bof the proposed method over other existing methods are pointed out.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22377/ajms.v5i1.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the discrete schemes of extrapolated block Adams Moulton methods were obtained through the continuous formulation of the linear multistep collocation method by matrix inversion approach for the numerical solutions of first-order delay differential equations (DDEs) without the use of interpolation techniques in evaluating the delay term. The delay term was computed by a valid idea of sequence. The advantages, convergence, stability analysis, and central processing unit time at a constant step size bof the proposed method over other existing methods are pointed out.
求解一阶时滞微分方程的外推Block Adams Moulton方法
本文采用矩阵反演方法,对一阶延迟微分方程(DDEs)的数值解进行了线性多步配置法的连续表述,得到了外推块Adams Moulton方法的离散格式,而不使用插值技术对延迟项进行求值。用一种有效的序列思想计算了时滞项。指出了该方法在收敛性、稳定性分析和恒步长中央处理机时间等方面优于现有方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信