Geolocation of Mobile Objects from Multiple UAV Optical Sensor Platforms

Peter Carniglia, B. Balaji, S. Rajan
{"title":"Geolocation of Mobile Objects from Multiple UAV Optical Sensor Platforms","authors":"Peter Carniglia, B. Balaji, S. Rajan","doi":"10.1109/ICSENS.2018.8589913","DOIUrl":null,"url":null,"abstract":"With the rise of inexpensive, commercially available UAVs (drones) it has become possible to collect data from multiple UAVs equipped with optical sensors. This possibility has enabled tracking and data fusion with multiple airborne platforms. The addition of multiple airborne sensors allows for more robust tracking that is less susceptible to clutter and track proliferation. This paper demonstrates the air-to-ground tracking capabilities of two airborne sensors following a moving ground target using the centralized fusion Extended Kalman Filter and Probabilistic Data Association Filter implemented in the Python library pystemlib. The result of adding multiple airborne sensors is a reduced state estimation error and more robust target state predictions evidenced by a reduced root-mean-square error and smaller area of probabilities. A validation of this approach is demonstrated with real data.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rise of inexpensive, commercially available UAVs (drones) it has become possible to collect data from multiple UAVs equipped with optical sensors. This possibility has enabled tracking and data fusion with multiple airborne platforms. The addition of multiple airborne sensors allows for more robust tracking that is less susceptible to clutter and track proliferation. This paper demonstrates the air-to-ground tracking capabilities of two airborne sensors following a moving ground target using the centralized fusion Extended Kalman Filter and Probabilistic Data Association Filter implemented in the Python library pystemlib. The result of adding multiple airborne sensors is a reduced state estimation error and more robust target state predictions evidenced by a reduced root-mean-square error and smaller area of probabilities. A validation of this approach is demonstrated with real data.
基于多无人机光学传感器平台的移动目标地理定位
随着廉价、商用无人机的兴起,从配备光学传感器的多架无人机上收集数据已经成为可能。这种可能性使跟踪和数据融合与多个机载平台成为可能。增加多个机载传感器可以实现更稳健的跟踪,不太容易受到杂波和跟踪扩散的影响。本文利用Python库pystemlib中实现的集中融合扩展卡尔曼滤波器和概率数据关联滤波器,演示了两个机载传感器跟踪移动地面目标的空对地跟踪能力。增加多个机载传感器的结果是状态估计误差减小,目标状态预测更加鲁棒,这可以通过减小均方根误差和减小概率面积来证明。用实际数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信