Dongchen Liang, Raphaela Kreiser, Carsten Nielsen, Ning Qiao, Yulia Sandamirskaya, G. Indiveri
{"title":"Robust Learning and Recognition of Visual Patterns in Neuromorphic Electronic Agents","authors":"Dongchen Liang, Raphaela Kreiser, Carsten Nielsen, Ning Qiao, Yulia Sandamirskaya, G. Indiveri","doi":"10.1109/AICAS.2019.8771580","DOIUrl":null,"url":null,"abstract":"Mixed-signal analog/digital neuromorphic circuits are characterized by ultra-low power consumption, real-time processing abilities, and low-latency response times. These features make them promising for robotic applications that require fast and power-efficient computing. However, the unavoidable variance inherently existing in the analog circuits makes it challenging to develop neural processing architectures able to perform complex computations robustly. In this paper, we present a spiking neural network architecture with spike-based learning that enables robust learning and recognition of visual patterns in noisy silicon neural substrate and noisy environments. The architecture is used to perform pattern recognition and inference after a training phase with computers and neuromorphic hardware in the loop. We validate the proposed system in a closed-loop hardware setup composed of neuromorphic vision sensors and processors, and we present experimental results that quantify its real-time and robust perception and action behavior.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Mixed-signal analog/digital neuromorphic circuits are characterized by ultra-low power consumption, real-time processing abilities, and low-latency response times. These features make them promising for robotic applications that require fast and power-efficient computing. However, the unavoidable variance inherently existing in the analog circuits makes it challenging to develop neural processing architectures able to perform complex computations robustly. In this paper, we present a spiking neural network architecture with spike-based learning that enables robust learning and recognition of visual patterns in noisy silicon neural substrate and noisy environments. The architecture is used to perform pattern recognition and inference after a training phase with computers and neuromorphic hardware in the loop. We validate the proposed system in a closed-loop hardware setup composed of neuromorphic vision sensors and processors, and we present experimental results that quantify its real-time and robust perception and action behavior.