Chinese Chunking Based on Coarse-Grained Part-of-Speech Features

Guanglu Sun, Y. Xue, Zhiming Xu, Fei Lang
{"title":"Chinese Chunking Based on Coarse-Grained Part-of-Speech Features","authors":"Guanglu Sun, Y. Xue, Zhiming Xu, Fei Lang","doi":"10.1109/IALP.2009.54","DOIUrl":null,"url":null,"abstract":"Although part-of-speech (POS) is an effective feature for Chinese Chunking, the POS-tagging errors generated by automatic POS tagger leads to almost 10% performance drop in F-score. To solve this problem, this paper presents new features to replace the POS features, namely the coarse-grained part-of-speech features. Combining with the methods of processing out-of-vocabulary words, the new features are utilized in the Chinese chunking model. Experimental results show that the new features can contribute 2.71% performance improvement over the baseline method.","PeriodicalId":156840,"journal":{"name":"2009 International Conference on Asian Language Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2009.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although part-of-speech (POS) is an effective feature for Chinese Chunking, the POS-tagging errors generated by automatic POS tagger leads to almost 10% performance drop in F-score. To solve this problem, this paper presents new features to replace the POS features, namely the coarse-grained part-of-speech features. Combining with the methods of processing out-of-vocabulary words, the new features are utilized in the Chinese chunking model. Experimental results show that the new features can contribute 2.71% performance improvement over the baseline method.
基于粗粒度词性特征的汉语分块
虽然词性标注是汉语分组的一个有效特征,但词性标注自动生成的词性标注错误导致f分下降近10%。为了解决这一问题,本文提出了新的特征来代替词性特征,即粗粒度词性特征。结合词汇外词的处理方法,将这些新特征应用到汉语分块模型中。实验结果表明,新特征比基线方法的性能提高了2.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信