Exponential stability analysis for the switched stochastic hopfield neural networks with time-varying delays

Huimin Xiao, Chunhua Wang
{"title":"Exponential stability analysis for the switched stochastic hopfield neural networks with time-varying delays","authors":"Huimin Xiao, Chunhua Wang","doi":"10.1504/IJAMECHS.2012.051567","DOIUrl":null,"url":null,"abstract":"In this paper, the robust exponential stability analysis is considered for a class of switched stochastic Hopfield neural systems with parameter uncertainties and stochastic perturbations. The parameter uncertainties are assumed to be norm bounded. Firstly, based on Lyapunov-Krasovskii functional and linear matrix inequality (LMI) tools, by employing multiple Lyapunov function techniques, a delay-dependent sufficient condition is derived for the switched stochastic neural networks with time-varying delays under an appropriate switching law. Secondly, the sufficient criteria is given to guarantee the uncertain switched stochastic Hopfield neural systems to be mean-square exponentially stable for all admissible parametric uncertainties. Finally, numerical examples are provided to illustrate the effectiveness of the proposed theory.","PeriodicalId":370765,"journal":{"name":"The 2011 International Conference on Advanced Mechatronic Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Conference on Advanced Mechatronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAMECHS.2012.051567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the robust exponential stability analysis is considered for a class of switched stochastic Hopfield neural systems with parameter uncertainties and stochastic perturbations. The parameter uncertainties are assumed to be norm bounded. Firstly, based on Lyapunov-Krasovskii functional and linear matrix inequality (LMI) tools, by employing multiple Lyapunov function techniques, a delay-dependent sufficient condition is derived for the switched stochastic neural networks with time-varying delays under an appropriate switching law. Secondly, the sufficient criteria is given to guarantee the uncertain switched stochastic Hopfield neural systems to be mean-square exponentially stable for all admissible parametric uncertainties. Finally, numerical examples are provided to illustrate the effectiveness of the proposed theory.
时变时滞切换随机hopfield神经网络的指数稳定性分析
研究了一类具有参数不确定性和随机扰动的切换随机Hopfield神经系统的鲁棒指数稳定性分析。假设参数不确定性是范数有界的。首先,基于Lyapunov- krasovskii泛函和线性矩阵不等式(LMI)工具,采用多重Lyapunov函数技术,在适当的切换律下,导出了时变时滞切换随机神经网络的时滞相关充分条件;其次,给出了不确定切换随机Hopfield神经系统对于所有允许的参数不确定性均方指数稳定的充分准则;最后,通过数值算例说明了所提理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信