{"title":"Natural fractures and their relationships to structure, stress, and permeability in the Raton Basin","authors":"J. Lorenz, S. Cooper","doi":"10.31582/RMAG.MG.58.4.375","DOIUrl":null,"url":null,"abstract":"Fractures in Cretaceous and early Tertiary strata record several deformation events that were imposed on the formations that fill the Raton Basin in Colorado and New Mexico. A regional, generally WNW-ESE striking extension-fracture set is present across much of the basin, but fracturing also includes both dip-slip and strike-slip conjugate shear-fracture sets as well as irregular deformation-band shear fractures. In some areas of the basin, the extension fractures are dynamically-compatible with associated conjugate shear fractures, both recording a maximum compressive stress that was horizontal, trending predominantly WNW-ESE. Fracture strikes vary from NW-SE to ENE-WSW but are approximately normal to the front of the Laramide thrust-fault system that forms the western edge of the basin, implying that fracturing was the result of a horizontal compressive stress anisotropy created by indentation of the thrust system into the basin margin. Fracture anomalies occur over local structures including a N-S basement wrench-fault system that connects two large anticlines within the basin, the Tercio and Vermejo Park anticlines, where N-S strike-slip offset along the basement wrench faults caused folding and fracturing in the overlying strata. The Laramide stress system in the basin changed from thrust-related WNW-ESE horizontal compression to the present-day N-S maximum horizontal compressive stress in mid-Tertiary time as the thrust system became inactive and was replaced by regional E-W extension. No new fracture sets were formed by the re-oriented stress system, although stress-release fractures normal to the regional set formed in outcrops as overlying strata were eroded. Fracture datasets were derived from three sources during this study: outcrops, image logs, and cores. Each source provides a somewhat different perspective on the fractures that enhance permeability in Raton Basin reservoirs. Taken together, the three datasets provide the basis for a relatively complete conceptual model of the Raton fracture system. Fracture-controlled permeability anisotropy will be greatest in the WNW-ESE direction, parallel to the strike of the dominant set of Laramide-age natural fractures, but hydraulic stimulation fractures will propagate N-S, across the strike of those fractures under the influence of the present-day stress system. The apertures of the WNW-ESE fractures will be susceptible to closure under that stress system since the maximum horizontal compressive stress is approximately normal to fracture strike.","PeriodicalId":101513,"journal":{"name":"Mountain Geologist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mountain Geologist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31582/RMAG.MG.58.4.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fractures in Cretaceous and early Tertiary strata record several deformation events that were imposed on the formations that fill the Raton Basin in Colorado and New Mexico. A regional, generally WNW-ESE striking extension-fracture set is present across much of the basin, but fracturing also includes both dip-slip and strike-slip conjugate shear-fracture sets as well as irregular deformation-band shear fractures. In some areas of the basin, the extension fractures are dynamically-compatible with associated conjugate shear fractures, both recording a maximum compressive stress that was horizontal, trending predominantly WNW-ESE. Fracture strikes vary from NW-SE to ENE-WSW but are approximately normal to the front of the Laramide thrust-fault system that forms the western edge of the basin, implying that fracturing was the result of a horizontal compressive stress anisotropy created by indentation of the thrust system into the basin margin. Fracture anomalies occur over local structures including a N-S basement wrench-fault system that connects two large anticlines within the basin, the Tercio and Vermejo Park anticlines, where N-S strike-slip offset along the basement wrench faults caused folding and fracturing in the overlying strata. The Laramide stress system in the basin changed from thrust-related WNW-ESE horizontal compression to the present-day N-S maximum horizontal compressive stress in mid-Tertiary time as the thrust system became inactive and was replaced by regional E-W extension. No new fracture sets were formed by the re-oriented stress system, although stress-release fractures normal to the regional set formed in outcrops as overlying strata were eroded. Fracture datasets were derived from three sources during this study: outcrops, image logs, and cores. Each source provides a somewhat different perspective on the fractures that enhance permeability in Raton Basin reservoirs. Taken together, the three datasets provide the basis for a relatively complete conceptual model of the Raton fracture system. Fracture-controlled permeability anisotropy will be greatest in the WNW-ESE direction, parallel to the strike of the dominant set of Laramide-age natural fractures, but hydraulic stimulation fractures will propagate N-S, across the strike of those fractures under the influence of the present-day stress system. The apertures of the WNW-ESE fractures will be susceptible to closure under that stress system since the maximum horizontal compressive stress is approximately normal to fracture strike.