Wavelet-based Real Time Detection of Network Traffic Anomalies

Chin-Tser Huang, Sachin Thareja, Y. Shin
{"title":"Wavelet-based Real Time Detection of Network Traffic Anomalies","authors":"Chin-Tser Huang, Sachin Thareja, Y. Shin","doi":"10.1109/SECCOMW.2006.359584","DOIUrl":null,"url":null,"abstract":"Real time network monitoring for intrusions is offered by various host and network based intrusion detection systems. These systems largely use signature or pattern matching techniques at the core and thus are ineffective in detecting unknown anomalous activities. In this paper, we apply signal processing techniques in intrusion detection systems, and develop and implement a framework, called Waveman, for real time wavelet-based analysis of network traffic anomalies. Then, we use two metrics, namely percentage deviation and entropy, to evaluate the performance of various wavelet functions on detecting different types of anomalies like denial of service (DoS) attacks and portscans. Our evaluation results show that Coiflet and Paul wavelets perform better than other wavelets in detecting most anomalies considered in this work","PeriodicalId":156828,"journal":{"name":"2006 Securecomm and Workshops","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Securecomm and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECCOMW.2006.359584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Real time network monitoring for intrusions is offered by various host and network based intrusion detection systems. These systems largely use signature or pattern matching techniques at the core and thus are ineffective in detecting unknown anomalous activities. In this paper, we apply signal processing techniques in intrusion detection systems, and develop and implement a framework, called Waveman, for real time wavelet-based analysis of network traffic anomalies. Then, we use two metrics, namely percentage deviation and entropy, to evaluate the performance of various wavelet functions on detecting different types of anomalies like denial of service (DoS) attacks and portscans. Our evaluation results show that Coiflet and Paul wavelets perform better than other wavelets in detecting most anomalies considered in this work
基于小波的网络流量异常实时检测
各种基于主机和网络的入侵检测系统提供了对入侵的实时网络监控。这些系统主要使用签名或模式匹配技术作为核心,因此在检测未知异常活动方面是无效的。在本文中,我们将信号处理技术应用于入侵检测系统,并开发和实现了一个名为Waveman的框架,用于基于小波的网络流量异常实时分析。然后,我们使用两个指标,即百分比偏差和熵,来评估各种小波函数在检测不同类型的异常(如拒绝服务攻击和端口扫描)方面的性能。我们的评估结果表明,Coiflet和Paul小波在检测本工作中考虑的大多数异常方面比其他小波表现更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信