Synthesizing Physiological and Motion Data for Stress and Meditation Detection

Md Taufeeq Uddin, Shaun J. Canavan
{"title":"Synthesizing Physiological and Motion Data for Stress and Meditation Detection","authors":"Md Taufeeq Uddin, Shaun J. Canavan","doi":"10.1109/ACIIW.2019.8925245","DOIUrl":null,"url":null,"abstract":"In this work, we present the synthesis of physiological and motion data to classify, detect and estimate affective state ahead of time (i.e. predict). We use raw physiological and motion signals to predict the next values of the signal following a temporal modeling scheme. The physiological signals are synthesized using a one-dimensional convolutional neural network. We then use a random forest to predict the affective state from the newly synthesized data. In our experimental design, we synthesize and predict both stress and mediation states. We show the utility of our approach to data synthesis for prediction of stress and meditation states through two methods. First, we report the concordance correlation coefficient of the synthetic signals compared to the ground truth. Secondly, we report prediction results on synthetic data that are comparable to the original ground-truth signals.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work, we present the synthesis of physiological and motion data to classify, detect and estimate affective state ahead of time (i.e. predict). We use raw physiological and motion signals to predict the next values of the signal following a temporal modeling scheme. The physiological signals are synthesized using a one-dimensional convolutional neural network. We then use a random forest to predict the affective state from the newly synthesized data. In our experimental design, we synthesize and predict both stress and mediation states. We show the utility of our approach to data synthesis for prediction of stress and meditation states through two methods. First, we report the concordance correlation coefficient of the synthetic signals compared to the ground truth. Secondly, we report prediction results on synthetic data that are comparable to the original ground-truth signals.
综合生理和运动数据的压力和冥想检测
在这项工作中,我们提出了生理和运动数据的综合,以提前分类,检测和估计情感状态(即预测)。我们使用原始的生理和运动信号来预测信号的下一个值。生理信号是用一维卷积神经网络合成的。然后,我们使用随机森林从新合成的数据中预测情感状态。在我们的实验设计中,我们综合并预测了应激状态和中介状态。我们通过两种方法展示了我们的数据合成方法在预测压力和冥想状态方面的实用性。首先,我们报告了合成信号与地面真值的一致性相关系数。其次,我们报告了与原始地真值信号相当的合成数据的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信