DIO: Efficient interactive outlier analysis over dynamic datasets

Chihiro Sakazume, H. Kitagawa, T. Amagasa
{"title":"DIO: Efficient interactive outlier analysis over dynamic datasets","authors":"Chihiro Sakazume, H. Kitagawa, T. Amagasa","doi":"10.1109/ICDIM.2017.8244652","DOIUrl":null,"url":null,"abstract":"Outlier detection is an important data mining topic, and distance-based outlier detection is one of the representative methods. However, it is known that selecting parameter values suited for detecting outliers matching the user intent is not easy. To address this problem, an interactive outlier analysis framework named ONION was proposed. ONION analyzes datasets in advance and constructs index structures, which support several types of interactive outlier analysis and help users choose appropriate parameter values. However, ONION assumes static datasets, and updates to the datasets are not considered. In this work, we propose a novel scheme named DIO (Dynamic and Interactive Outlier analysis) to make ONION-like interactive outlier analysis applicable to dynamic datasets. DIO provides a grid structure for data objects and neighboring object counters to avoid expensive distance recomputations and enables efficient updates of the index structures. Intensive experiments prove that DIO achieves remarkable performance improvements.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Outlier detection is an important data mining topic, and distance-based outlier detection is one of the representative methods. However, it is known that selecting parameter values suited for detecting outliers matching the user intent is not easy. To address this problem, an interactive outlier analysis framework named ONION was proposed. ONION analyzes datasets in advance and constructs index structures, which support several types of interactive outlier analysis and help users choose appropriate parameter values. However, ONION assumes static datasets, and updates to the datasets are not considered. In this work, we propose a novel scheme named DIO (Dynamic and Interactive Outlier analysis) to make ONION-like interactive outlier analysis applicable to dynamic datasets. DIO provides a grid structure for data objects and neighboring object counters to avoid expensive distance recomputations and enables efficient updates of the index structures. Intensive experiments prove that DIO achieves remarkable performance improvements.
DIO:动态数据集的高效交互式离群分析
离群点检测是数据挖掘的一个重要课题,基于距离的离群点检测是具有代表性的方法之一。然而,众所周知,选择适合于检测与用户意图匹配的异常值的参数值并不容易。为了解决这一问题,提出了一个交互式离群值分析框架ONION。ONION预先分析数据集并构建索引结构,支持多种类型的交互式离群值分析,帮助用户选择合适的参数值。但是,ONION假定数据集是静态的,并且不考虑对数据集的更新。在这项工作中,我们提出了一种名为DIO(动态和交互式离群分析)的新方案,使类似onion的交互式离群分析适用于动态数据集。DIO为数据对象和相邻对象计数器提供了网格结构,以避免昂贵的距离重新计算,并支持索引结构的有效更新。大量的实验证明,DIO取得了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信