Stock Price Prediction: A Time Series Analysis

Fatima Juairiah, Mostafa Mahatabe, Hasan Bin Jamal, Aysha Shiddika, Tanvir Rouf Shawon, Nibir Chandra Mandal
{"title":"Stock Price Prediction: A Time Series Analysis","authors":"Fatima Juairiah, Mostafa Mahatabe, Hasan Bin Jamal, Aysha Shiddika, Tanvir Rouf Shawon, Nibir Chandra Mandal","doi":"10.1109/ICCIT57492.2022.10056009","DOIUrl":null,"url":null,"abstract":"Predicting future stock volatility has always been a demanding chore for research studies. Individuals around the world have long regarded the stock market as a substantial profit. A stock data set contains numerous precise terms that are difficult for an individual to comprehend when considering stock market expenditures. An essential manifestation of a stock’s performance on the stock market is its closing price, but it is challenging to estimate the stock market’s price movements. This study aims to provide a future market scenario supported by statistical data. We used the Microsoft Corporation Stock dataset from 1986 to 2022. To foresee stock market volatility, we used time series analysis with the Long Short-Term Memory (LSTM), Bidirectional Long-short Term Memory (Bi-LSTM), Autoregressive Integrated Moving Average (ARIMA), Hidden Markov Model (HMM), and Multi-Head Attention. We have achieved 0.153, 0.202, 6.674, 14.760, and 21.493 for Transformer, HMM, ARIMA, BiLSTM, and LSTM respectively.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10056009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting future stock volatility has always been a demanding chore for research studies. Individuals around the world have long regarded the stock market as a substantial profit. A stock data set contains numerous precise terms that are difficult for an individual to comprehend when considering stock market expenditures. An essential manifestation of a stock’s performance on the stock market is its closing price, but it is challenging to estimate the stock market’s price movements. This study aims to provide a future market scenario supported by statistical data. We used the Microsoft Corporation Stock dataset from 1986 to 2022. To foresee stock market volatility, we used time series analysis with the Long Short-Term Memory (LSTM), Bidirectional Long-short Term Memory (Bi-LSTM), Autoregressive Integrated Moving Average (ARIMA), Hidden Markov Model (HMM), and Multi-Head Attention. We have achieved 0.153, 0.202, 6.674, 14.760, and 21.493 for Transformer, HMM, ARIMA, BiLSTM, and LSTM respectively.
股票价格预测:一个时间序列分析
预测未来股票波动对研究来说一直是一项艰巨的任务。长期以来,世界各地的个人都认为股票市场是一笔丰厚的利润。股票数据集包含许多精确的术语,当考虑股票市场支出时,个人很难理解。股票在股票市场上表现的一个基本表现是它的收盘价,但估计股票市场的价格变动是具有挑战性的。本研究的目的是提供一个未来的市场情景支持的统计数据。我们使用了1986年至2022年的微软公司股票数据集。为了预测股票市场的波动,我们使用了长短期记忆(LSTM)、双向长短期记忆(Bi-LSTM)、自回归综合移动平均(ARIMA)、隐马尔可夫模型(HMM)和多头注意的时间序列分析。我们对Transformer、HMM、ARIMA、BiLSTM和LSTM分别实现了0.153、0.202、6.674、14.760和21.493。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信