{"title":"Spectral regularization in generalized matrix learning vector quantization","authors":"David Nova, P. Estévez","doi":"10.1109/WSOM.2017.8020029","DOIUrl":null,"url":null,"abstract":"In this contribution we propose a new regularization method for the Generalized Matrix Learning Vector Quantization classifier. In particular we use a nuclear norm in order to prevent oversimplifying/over-fitting and oscillatory behaviour of the small eigenvalues of the positive semi-definite relevance matrix. The proposed method is compared with two other regularization methods in two artificial data sets and a reallife problem. The results show that the proposed regularization method enhances the generalization ability of GMLVQ. This is reflected in a lower classification error and a better interpretability of the relevance matrix.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this contribution we propose a new regularization method for the Generalized Matrix Learning Vector Quantization classifier. In particular we use a nuclear norm in order to prevent oversimplifying/over-fitting and oscillatory behaviour of the small eigenvalues of the positive semi-definite relevance matrix. The proposed method is compared with two other regularization methods in two artificial data sets and a reallife problem. The results show that the proposed regularization method enhances the generalization ability of GMLVQ. This is reflected in a lower classification error and a better interpretability of the relevance matrix.