Addition and Differentiation of ZX-Diagrams

E. Jeandel, S. Perdrix, Margarita Veshchezerova
{"title":"Addition and Differentiation of ZX-Diagrams","authors":"E. Jeandel, S. Perdrix, Margarita Veshchezerova","doi":"10.4230/LIPIcs.FSCD.2022.13","DOIUrl":null,"url":null,"abstract":"The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this addition technique, we provide an inductive differentiation of ZX-diagrams. Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics and quantum computing (e.g. for solving optimization problems). Technically, differentiation of ZX-diagrams is strongly related to summation as witnessed by the product rules. We also introduce an alternative, non inductive, differentiation technique rather based on the isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The ZX-calculus is a powerful framework for reasoning in quantum computing. It provides in particular a compact representation of matrices of interests. A peculiar property of the ZX-calculus is the absence of a formal sum allowing the linear combinations of arbitrary ZX-diagrams. The universality of the formalism guarantees however that for any two ZX-diagrams, the sum of their interpretations can be represented by a ZX-diagram. We introduce a general, inductive definition of the addition of ZX-diagrams, relying on the construction of controlled diagrams. Based on this addition technique, we provide an inductive differentiation of ZX-diagrams. Indeed, given a ZX-diagram with variables in the description of its angles, one can differentiate the diagram according to one of these variables. Differentiation is ubiquitous in quantum mechanics and quantum computing (e.g. for solving optimization problems). Technically, differentiation of ZX-diagrams is strongly related to summation as witnessed by the product rules. We also introduce an alternative, non inductive, differentiation technique rather based on the isolation of the variables. Finally, we apply our results to deduce a diagram for an Ising Hamiltonian.
zx图的加法与微分
zx演算是量子计算推理的一个强大框架。它特别提供了利益矩阵的紧凑表示。zx微积分的一个特殊性质是不存在允许任意zx图的线性组合的形式和。然而,形式主义的普遍性保证了对于任意两个zx图,它们的解释之和可以用一个zx图来表示。我们介绍了一个一般的,归纳的zx图的加法定义,依赖于控制图的构造。基于这种加法技术,我们给出了zx图的归纳微分。事实上,给定一个带有角度描述变量的zx图,我们可以根据其中一个变量来区分这个图。微分在量子力学和量子计算中无处不在(例如,用于解决优化问题)。从技术上讲,从乘积规则可以看出,zx图的微分与求和密切相关。我们还介绍了另一种非归纳的微分技术,而不是基于变量的隔离。最后,我们应用我们的结果推导出一个伊辛哈密顿量图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信