{"title":"Adaptive energy-efficient task partitioning for heterogeneous multi-core multiprocessor real-time systems","authors":"Shivashis Saha, J. Deogun, Ying Lu","doi":"10.1109/HPCSim.2012.6266904","DOIUrl":null,"url":null,"abstract":"The designs of heterogeneous multi-core multiprocessor real-time systems are evolving for higher energy efficiency at the cost of increased heat density. This adversely effects the reliability and performance of the real-time systems. Moreover, the partitioning of periodic real-time tasks based on their worst case execution time can lead to significant energy wastage. In this paper, we investigate adaptive energy-efficient task partitioning for heterogeneous multi-core multiprocessor realtime systems. We use a power model which incorporates the impact of temperature and voltage of a processor on its static power consumption. Two different thermal models are used to estimate the peak temperature of a processor. We develop two feedback-based optimization and control approaches for adaptively partitioning real-time tasks according to their actual utilizations. Simulation results show that the proposed approaches are effective in minimizing the energy consumption and reducing the number of task migrations.","PeriodicalId":428764,"journal":{"name":"2012 International Conference on High Performance Computing & Simulation (HPCS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2012.6266904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The designs of heterogeneous multi-core multiprocessor real-time systems are evolving for higher energy efficiency at the cost of increased heat density. This adversely effects the reliability and performance of the real-time systems. Moreover, the partitioning of periodic real-time tasks based on their worst case execution time can lead to significant energy wastage. In this paper, we investigate adaptive energy-efficient task partitioning for heterogeneous multi-core multiprocessor realtime systems. We use a power model which incorporates the impact of temperature and voltage of a processor on its static power consumption. Two different thermal models are used to estimate the peak temperature of a processor. We develop two feedback-based optimization and control approaches for adaptively partitioning real-time tasks according to their actual utilizations. Simulation results show that the proposed approaches are effective in minimizing the energy consumption and reducing the number of task migrations.