Novel multimodal identification technique using Iris & Palmprint traits with various matching score level proportions using BTC of bit plane slices

Sudeep D. Thepade, Rupali K. Bhondave
{"title":"Novel multimodal identification technique using Iris & Palmprint traits with various matching score level proportions using BTC of bit plane slices","authors":"Sudeep D. Thepade, Rupali K. Bhondave","doi":"10.1109/PERVASIVE.2015.7087147","DOIUrl":null,"url":null,"abstract":"In multimodal biometric techniques are considered for fusion at different levels like Score level, Feature level and Decision level. Here the Iris and Palmprint traits considered with score level fusion to get proposed multimodal identification technique using Block Truncation Coding (BTC) applied on the individual biplanes of iris and palmprint images. Use of Block Truncation Code makes the feature extraction independent of size of iris and palmprint images. The experimentation done using test bed with 60 pairs of iris and palmprint images for 10 persons. Experimentation results have indicated that BTC level 1 performs better than BTC level 2 in all biplanes for proposed multimodal biometric identification technique. For the score level fusion of features of iris and palm traits various proportions are used. The higher proportion of Palmprint gives better identification. The proposed multimodal identification techniques with score level Iris: Palmprint fusion with 1:4 proportions has given best genuine acceptance rate with BTC level 1.","PeriodicalId":442000,"journal":{"name":"2015 International Conference on Pervasive Computing (ICPC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Pervasive Computing (ICPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERVASIVE.2015.7087147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In multimodal biometric techniques are considered for fusion at different levels like Score level, Feature level and Decision level. Here the Iris and Palmprint traits considered with score level fusion to get proposed multimodal identification technique using Block Truncation Coding (BTC) applied on the individual biplanes of iris and palmprint images. Use of Block Truncation Code makes the feature extraction independent of size of iris and palmprint images. The experimentation done using test bed with 60 pairs of iris and palmprint images for 10 persons. Experimentation results have indicated that BTC level 1 performs better than BTC level 2 in all biplanes for proposed multimodal biometric identification technique. For the score level fusion of features of iris and palm traits various proportions are used. The higher proportion of Palmprint gives better identification. The proposed multimodal identification techniques with score level Iris: Palmprint fusion with 1:4 proportions has given best genuine acceptance rate with BTC level 1.
基于比特平面切片的BTC,利用不同匹配分数水平比例的虹膜和掌纹特征进行多模态识别
在多模态生物识别技术中,人们考虑在不同的层次上进行融合,如得分水平、特征水平和决策水平。本文将虹膜和掌纹特征与分数水平融合,提出了基于块截断编码(BTC)的虹膜和掌纹图像单面多模态识别技术。块截断码的使用使得特征提取与虹膜和掌纹图像的大小无关。实验采用60对10人的虹膜和掌纹图像作为实验平台。实验结果表明,对于所提出的多模态生物识别技术,BTC 1级在所有双翼飞机上的性能都优于BTC 2级。对于虹膜和手掌特征的评分融合,采用了不同的比例。掌纹比例越高,识别效果越好。所提出的分数等级为1:4的虹膜:掌纹融合的多模态识别技术在BTC等级为1的情况下获得了最佳的真实接受率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信