Chinese readability assessment using TF-IDF and SVM

Yaw-Huei Chen, Yao-Hung Hubert Tsai, Yu-Ta Chen
{"title":"Chinese readability assessment using TF-IDF and SVM","authors":"Yaw-Huei Chen, Yao-Hung Hubert Tsai, Yu-Ta Chen","doi":"10.1109/ICMLC.2011.6016783","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple yet effective method to automatically determine the readability of Chinese articles. We use mutual information to select the most important terms from the training data, calculate TF-IDF values based on those terms, and use those values as features for SVM to build classification models that identify articles suitable for lower grade students and middle grade students in elementary school. The experiments on elementary school textbooks produce satisfactory results.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a simple yet effective method to automatically determine the readability of Chinese articles. We use mutual information to select the most important terms from the training data, calculate TF-IDF values based on those terms, and use those values as features for SVM to build classification models that identify articles suitable for lower grade students and middle grade students in elementary school. The experiments on elementary school textbooks produce satisfactory results.
基于TF-IDF和SVM的中文可读性评价
本文提出了一种简单有效的中文文章可读性自动判别方法。我们利用互信息从训练数据中选择最重要的项,根据这些项计算TF-IDF值,并将这些值作为SVM的特征,建立分类模型,识别适合小学低年级学生和初中学生的文章。对小学教科书进行了实验,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信