Machine Learning Techniques for the Energy and Performance Improvement in Network-on-Chip (NoC)

J. Ramadevi, S. Pathur Nisha, S. Karunakaran, S. Hemavathi, Sankararao Majji, Anandaraj Shunmugam
{"title":"Machine Learning Techniques for the Energy and Performance Improvement in Network-on-Chip (NoC)","authors":"J. Ramadevi, S. Pathur Nisha, S. Karunakaran, S. Hemavathi, Sankararao Majji, Anandaraj Shunmugam","doi":"10.1109/ICCCT53315.2021.9711872","DOIUrl":null,"url":null,"abstract":"On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to deliver the greatest possible performance, energy, and cost trade-offs. In this regard, a Network-on-Chip architecture with many parallel and specialized cores is one of the most promising (NoC). An architecture parameter that impacts deep neural networks' performance is the number and size of memory interfaces. Using these and other architectural criteria, we investigate the design space that can be created. We demonstrate how on-chip communication dominates delay while memory consumes the majority of energy. According to the findings, a new research area devoted to improving the performance and energy efficiency of on-chip communication fabrics and memory subsystems should be estavlished.","PeriodicalId":162171,"journal":{"name":"2021 4th International Conference on Computing and Communications Technologies (ICCCT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT53315.2021.9711872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On resource-constrained embedded devices (e.g., Internet of Things nodes), deep neural network inference requires specialized architectural solutions to deliver the greatest possible performance, energy, and cost trade-offs. In this regard, a Network-on-Chip architecture with many parallel and specialized cores is one of the most promising (NoC). An architecture parameter that impacts deep neural networks' performance is the number and size of memory interfaces. Using these and other architectural criteria, we investigate the design space that can be created. We demonstrate how on-chip communication dominates delay while memory consumes the majority of energy. According to the findings, a new research area devoted to improving the performance and energy efficiency of on-chip communication fabrics and memory subsystems should be estavlished.
芯片上网络(NoC)节能与性能改进的机器学习技术
在资源受限的嵌入式设备(例如物联网节点)上,深度神经网络推理需要专门的架构解决方案来提供最大可能的性能、能源和成本权衡。在这方面,具有许多并行和专用核心的片上网络架构是最有前途的(NoC)之一。影响深度神经网络性能的一个体系结构参数是内存接口的数量和大小。使用这些和其他架构标准,我们研究可以创建的设计空间。我们演示了片上通信如何支配延迟,而内存消耗大部分能量。根据研究结果,应该建立一个新的研究领域,致力于提高片上通信结构和存储子系统的性能和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信