Oskar J. Sandberg, Mathias Nyman, Staffan Dahlström, S. Sandén, J. Smått, R. Österbacka
{"title":"Quantifying loss-mechanisms related to charge carrier collection in thin-film solar cells (Conference Presentation)","authors":"Oskar J. Sandberg, Mathias Nyman, Staffan Dahlström, S. Sandén, J. Smått, R. Österbacka","doi":"10.1117/12.2323759","DOIUrl":null,"url":null,"abstract":"Processes taking place at contacts are of particular importance in organic and perovskite solar cells where selective contacts that are able to efficiently collect majority carriers, simultaneously blocking minority carriers are desired. The surface recombination velocity S_R, describing the quality of the contact interface, is a key parameter in obtaining an increased understanding of the kinetics taking place at contacts in thin-film devices [1]. \nWe have extended the analytical framework of the charge extraction by linearly increasing voltage (CELIV) theory taking the effect of built-in voltage, diffusion and band-bending into account [2] and show how we can experimentally quantify loss mechanisms in charge collection [3-4]. We have derived analytical expressions describing the effective reduction of the built-in voltage and the (effective) open-circuit voltage providing means to quantify and distinguish various (loss) mechanisms for contact related effects in thin film solar cells [2-4]. \n\nReferences \n[1] O. Sandberg, M. Nyman, R. Osterbacka, Physical Review Applied 1, 024003 (2014)\n[2] O. Sandberg, M. Nyman, R. Osterbacka, Organic Electronics 15, 3413-3420 (2015)\n[3] A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H. Smatt, and R. Osterbacka, Advanced Energy Materials, 1502265 (2016)\n[4] O.J. Sandberg, et. al, Physical Review Letters, 118, 076601 (2017).","PeriodicalId":122801,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XIX","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2323759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Processes taking place at contacts are of particular importance in organic and perovskite solar cells where selective contacts that are able to efficiently collect majority carriers, simultaneously blocking minority carriers are desired. The surface recombination velocity S_R, describing the quality of the contact interface, is a key parameter in obtaining an increased understanding of the kinetics taking place at contacts in thin-film devices [1].
We have extended the analytical framework of the charge extraction by linearly increasing voltage (CELIV) theory taking the effect of built-in voltage, diffusion and band-bending into account [2] and show how we can experimentally quantify loss mechanisms in charge collection [3-4]. We have derived analytical expressions describing the effective reduction of the built-in voltage and the (effective) open-circuit voltage providing means to quantify and distinguish various (loss) mechanisms for contact related effects in thin film solar cells [2-4].
References
[1] O. Sandberg, M. Nyman, R. Osterbacka, Physical Review Applied 1, 024003 (2014)
[2] O. Sandberg, M. Nyman, R. Osterbacka, Organic Electronics 15, 3413-3420 (2015)
[3] A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H. Smatt, and R. Osterbacka, Advanced Energy Materials, 1502265 (2016)
[4] O.J. Sandberg, et. al, Physical Review Letters, 118, 076601 (2017).
在有机和钙钛矿太阳能电池中,接触处发生的过程特别重要,因为需要能够有效地收集多数载流子,同时阻断少数载流子的选择性接触。描述接触界面质量的表面复合速度S_R是加深对薄膜器件接触时发生的动力学的理解的关键参数[1]。我们通过线性增加电压(CELIV)理论扩展了电荷提取的分析框架,考虑了内置电压、扩散和带弯曲的影响[2],并展示了我们如何通过实验量化电荷收集中的损失机制[3-4]。我们推导了描述内置电压和(有效)开路电压有效降低的解析表达式,为量化和区分薄膜太阳能电池中接触相关效应的各种(损耗)机制提供了手段[2-4]。[2] O. Sandberg, M. Nyman, R. Osterbacka,有机电子学15,3413 -3420 (2015)[3]A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H。[4]张建军,张建军,张建军,等。新型能源材料,2001,22 (2016). [j] .能源工程学报,2001,26(4):663 - 668。