Quantifying loss-mechanisms related to charge carrier collection in thin-film solar cells (Conference Presentation)

Oskar J. Sandberg, Mathias Nyman, Staffan Dahlström, S. Sandén, J. Smått, R. Österbacka
{"title":"Quantifying loss-mechanisms related to charge carrier collection in thin-film solar cells (Conference Presentation)","authors":"Oskar J. Sandberg, Mathias Nyman, Staffan Dahlström, S. Sandén, J. Smått, R. Österbacka","doi":"10.1117/12.2323759","DOIUrl":null,"url":null,"abstract":"Processes taking place at contacts are of particular importance in organic and perovskite solar cells where selective contacts that are able to efficiently collect majority carriers, simultaneously blocking minority carriers are desired. The surface recombination velocity S_R, describing the quality of the contact interface, is a key parameter in obtaining an increased understanding of the kinetics taking place at contacts in thin-film devices [1]. \nWe have extended the analytical framework of the charge extraction by linearly increasing voltage (CELIV) theory taking the effect of built-in voltage, diffusion and band-bending into account [2] and show how we can experimentally quantify loss mechanisms in charge collection [3-4]. We have derived analytical expressions describing the effective reduction of the built-in voltage and the (effective) open-circuit voltage providing means to quantify and distinguish various (loss) mechanisms for contact related effects in thin film solar cells [2-4]. \n\nReferences \n[1] O. Sandberg, M. Nyman, R. Osterbacka, Physical Review Applied 1, 024003 (2014)\n[2] O. Sandberg, M. Nyman, R. Osterbacka, Organic Electronics 15, 3413-3420 (2015)\n[3] A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H. Smatt, and R. Osterbacka, Advanced Energy Materials, 1502265 (2016)\n[4] O.J. Sandberg, et. al, Physical Review Letters, 118, 076601 (2017).","PeriodicalId":122801,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XIX","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2323759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Processes taking place at contacts are of particular importance in organic and perovskite solar cells where selective contacts that are able to efficiently collect majority carriers, simultaneously blocking minority carriers are desired. The surface recombination velocity S_R, describing the quality of the contact interface, is a key parameter in obtaining an increased understanding of the kinetics taking place at contacts in thin-film devices [1]. We have extended the analytical framework of the charge extraction by linearly increasing voltage (CELIV) theory taking the effect of built-in voltage, diffusion and band-bending into account [2] and show how we can experimentally quantify loss mechanisms in charge collection [3-4]. We have derived analytical expressions describing the effective reduction of the built-in voltage and the (effective) open-circuit voltage providing means to quantify and distinguish various (loss) mechanisms for contact related effects in thin film solar cells [2-4]. References [1] O. Sandberg, M. Nyman, R. Osterbacka, Physical Review Applied 1, 024003 (2014) [2] O. Sandberg, M. Nyman, R. Osterbacka, Organic Electronics 15, 3413-3420 (2015) [3] A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H. Smatt, and R. Osterbacka, Advanced Energy Materials, 1502265 (2016) [4] O.J. Sandberg, et. al, Physical Review Letters, 118, 076601 (2017).
薄膜太阳能电池中载流子电荷收集的损耗机制量化(会议报告)
在有机和钙钛矿太阳能电池中,接触处发生的过程特别重要,因为需要能够有效地收集多数载流子,同时阻断少数载流子的选择性接触。描述接触界面质量的表面复合速度S_R是加深对薄膜器件接触时发生的动力学的理解的关键参数[1]。我们通过线性增加电压(CELIV)理论扩展了电荷提取的分析框架,考虑了内置电压、扩散和带弯曲的影响[2],并展示了我们如何通过实验量化电荷收集中的损失机制[3-4]。我们推导了描述内置电压和(有效)开路电压有效降低的解析表达式,为量化和区分薄膜太阳能电池中接触相关效应的各种(损耗)机制提供了手段[2-4]。[2] O. Sandberg, M. Nyman, R. Osterbacka,有机电子学15,3413 -3420 (2015)[3]A. Sundqvist, M. Nyman, O. Sandberg, S. Sanden, J.-H。[4]张建军,张建军,张建军,等。新型能源材料,2001,22 (2016). [j] .能源工程学报,2001,26(4):663 - 668。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信