Geometry Algebra and Gauss Elimination method for solving a linear system of equations without division

M. Cervenka
{"title":"Geometry Algebra and Gauss Elimination method for solving a linear system of equations without division","authors":"M. Cervenka","doi":"10.1109/Informatics57926.2022.10083445","DOIUrl":null,"url":null,"abstract":"This paper aims to calculate the Gaussian elimination method without division operation, which is useful for cases where the division operation is considerably expensive, not optimised or inconvenient. To substitute the division, more multiplication steps are performed. The division is completely avoided, reaching only 7 % longer execution time on a modern computer. Memory savings and also less multiplication has been reached in comparison to the state-of-the-art approach.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"713-715 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to calculate the Gaussian elimination method without division operation, which is useful for cases where the division operation is considerably expensive, not optimised or inconvenient. To substitute the division, more multiplication steps are performed. The division is completely avoided, reaching only 7 % longer execution time on a modern computer. Memory savings and also less multiplication has been reached in comparison to the state-of-the-art approach.
求解无除法线性方程组的几何代数和高斯消去法
本文的目的是计算不进行除法运算的高斯消去法,这种消去法适用于除法运算相当昂贵、不优化或不方便的情况。要代替除法,需要执行更多的乘法步骤。完全避免了除法,在现代计算机上只延长了7%的执行时间。与最先进的方法相比,已经达到了内存节省和更少的乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信