Neural-adaptive control of robotic manipulators using a supervisory inertia matrix

D. Richert, Arash Beirami, C. Macnab
{"title":"Neural-adaptive control of robotic manipulators using a supervisory inertia matrix","authors":"D. Richert, Arash Beirami, C. Macnab","doi":"10.1109/ICARA.2000.4804007","DOIUrl":null,"url":null,"abstract":"This paper utilizes a novel neural-adaptive method for controlling a two-link robotic manipulator. We do not need to resort to estimating the inverse dynamics. Our control utilizes the full dynamic model estimate including an inertia matrix estimate, referred to as a forward dynamics approach. Our novel contribution is to use an inertia matrix estimate to supervise the training of the neural networks. We find this overcomes the practical difficulties typically encountered with the forward dynamics method. The proposed method greatly improves performance over the forward dynamics approach, verified in experiment. The method is robust to changes in the real inertia matrix, because of a payload, even though the supervisory inertia matrix remains constant.","PeriodicalId":435769,"journal":{"name":"2009 4th International Conference on Autonomous Robots and Agents","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Autonomous Robots and Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2000.4804007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper utilizes a novel neural-adaptive method for controlling a two-link robotic manipulator. We do not need to resort to estimating the inverse dynamics. Our control utilizes the full dynamic model estimate including an inertia matrix estimate, referred to as a forward dynamics approach. Our novel contribution is to use an inertia matrix estimate to supervise the training of the neural networks. We find this overcomes the practical difficulties typically encountered with the forward dynamics method. The proposed method greatly improves performance over the forward dynamics approach, verified in experiment. The method is robust to changes in the real inertia matrix, because of a payload, even though the supervisory inertia matrix remains constant.
基于监督惯性矩阵的机械臂神经自适应控制
本文采用一种新颖的神经自适应方法来控制双连杆机械臂。我们不需要去估计逆动力学。我们的控制采用全动态模型估计,包括惯性矩阵估计,称为前向动力学方法。我们的新贡献是使用惯性矩阵估计来监督神经网络的训练。我们发现这克服了正激动力学方法通常遇到的实际困难。与前向动力学方法相比,该方法的性能得到了极大的提高,并得到了实验验证。该方法对实际惯性矩阵的变化具有鲁棒性,即使监督惯性矩阵保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信