Collective Latent Dirichlet Allocation

Zhiyong Shen, Junyi Sun, Yi-Dong Shen
{"title":"Collective Latent Dirichlet Allocation","authors":"Zhiyong Shen, Junyi Sun, Yi-Dong Shen","doi":"10.1109/ICDM.2008.75","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new variant of latent Dirichlet allocation (LDA): Collective LDA (C-LDA), for multiple corpora modeling. C-LDA combines multiple corpora during learning such that it can transfer knowledge from one corpus to another; meanwhile it keeps a discriminative node which represents the corpus ID to constrain the learned topics in each corpus. Compared with LDA locally applied to the target corpus, C-LDA results in refined topic-word distribution, while compared with applying LDA globally and straightforwardly to the combined corpus, C-LDA keeps each topic only for one corpus. We demonstrate that C-LDA has improved performance with these advantages by experiments on several benchmark document data sets.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we propose a new variant of latent Dirichlet allocation (LDA): Collective LDA (C-LDA), for multiple corpora modeling. C-LDA combines multiple corpora during learning such that it can transfer knowledge from one corpus to another; meanwhile it keeps a discriminative node which represents the corpus ID to constrain the learned topics in each corpus. Compared with LDA locally applied to the target corpus, C-LDA results in refined topic-word distribution, while compared with applying LDA globally and straightforwardly to the combined corpus, C-LDA keeps each topic only for one corpus. We demonstrate that C-LDA has improved performance with these advantages by experiments on several benchmark document data sets.
集体潜在狄利克雷分配
在本文中,我们提出了一种新的潜在狄利克雷分配(LDA)的变体:集体LDA (C-LDA),用于多语料库建模。C-LDA在学习过程中结合多个语料库,实现了语料库之间的知识转移;同时保留一个表示语料库ID的判别节点来约束每个语料库中的学习主题。与局部应用于目标语料库的LDA相比,C-LDA得到了更精细的主题词分布,而与全局直接应用于组合语料库的LDA相比,C-LDA只对一个语料库保留每个主题。我们通过在几个基准文档数据集上的实验证明了C-LDA具有这些优势,从而提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信