Locating and identifying components in a robot's workspace using a hybrid computer architecture

J. Ware, J. Undery
{"title":"Locating and identifying components in a robot's workspace using a hybrid computer architecture","authors":"J. Ware, J. Undery","doi":"10.1109/ISIC.1995.525050","DOIUrl":null,"url":null,"abstract":"This paper describes a system that locates and identifies components in an automated manufacturing process. The system uses a network of processors (an array of transputers) to construct and hold the workspace model, and to extract the feature measurements used to facilitate component identification. A MLP artificial neural network is then used to identify the components using the feature measurements obtained from the model. In an earlier version of this system goodness-of-fit was used to classify components, however, that method has drawbacks that neural networks overcome. The original design of the system was modular enabling a straightforward substitution of the component classification methods.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a system that locates and identifies components in an automated manufacturing process. The system uses a network of processors (an array of transputers) to construct and hold the workspace model, and to extract the feature measurements used to facilitate component identification. A MLP artificial neural network is then used to identify the components using the feature measurements obtained from the model. In an earlier version of this system goodness-of-fit was used to classify components, however, that method has drawbacks that neural networks overcome. The original design of the system was modular enabling a straightforward substitution of the component classification methods.
使用混合计算机体系结构定位和识别机器人工作空间中的组件
本文介绍了一种自动化制造过程中部件定位识别系统。该系统使用处理器网络(一组转发器)来构建和保持工作空间模型,并提取用于促进组件识别的特征测量。然后使用MLP人工神经网络利用从模型中获得的特征测量值来识别组件。在该系统的早期版本中,使用拟合优度对组件进行分类,然而,该方法具有神经网络克服的缺点。系统的原始设计是模块化的,可以直接替换组件分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信