Anomaly Detection and Accuracy Measurement for Categorical Data

K. Grubaugh, Zachary Zimmerman, Nicholas McAfee, Emily McGowan, Paul F. Evangelista
{"title":"Anomaly Detection and Accuracy Measurement for Categorical Data","authors":"K. Grubaugh, Zachary Zimmerman, Nicholas McAfee, Emily McGowan, Paul F. Evangelista","doi":"10.37266/ISER.2018V6I2.PP88-94","DOIUrl":null,"url":null,"abstract":"The Department of Defense (DoD) recently initiated an effort to compile all inter-service maintenance data for equipment and infrastructure, requiring the consolidation of maintenance records from over 40 different data sources.  This research evaluates and improves the accuracy of this maintenance data warehouse by means of value modeling and statistical methods for anomaly detection. The first step in this work included the categorization of error-identifying metadata, which was then consolidated into a weighted scoring model. The most novel aspect of the work involved error identification processes using conditional probability combinations and likelihood measures. This analysis showed promising results, successfully identifying numerous invalid maintenance description labels through the use of conditional probability tests. This process has potential to both reduce the amount of manual labor necessary to clean the DoD maintenance data records and provide better fidelity on DoD maintenance activities.","PeriodicalId":349010,"journal":{"name":"Industrial and Systems Engineering Review","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial and Systems Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37266/ISER.2018V6I2.PP88-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Department of Defense (DoD) recently initiated an effort to compile all inter-service maintenance data for equipment and infrastructure, requiring the consolidation of maintenance records from over 40 different data sources.  This research evaluates and improves the accuracy of this maintenance data warehouse by means of value modeling and statistical methods for anomaly detection. The first step in this work included the categorization of error-identifying metadata, which was then consolidated into a weighted scoring model. The most novel aspect of the work involved error identification processes using conditional probability combinations and likelihood measures. This analysis showed promising results, successfully identifying numerous invalid maintenance description labels through the use of conditional probability tests. This process has potential to both reduce the amount of manual labor necessary to clean the DoD maintenance data records and provide better fidelity on DoD maintenance activities.
分类数据的异常检测与精度测量
美国国防部(DoD)最近启动了一项工作,汇编设备和基础设施的所有服务间维护数据,需要整合来自40多个不同数据源的维护记录。本研究通过数值建模和异常检测的统计方法来评估和提高该维护数据仓库的准确性。这项工作的第一步包括对错误识别元数据进行分类,然后将其整合到加权评分模型中。这项工作最新颖的方面涉及使用条件概率组合和似然测量的错误识别过程。该分析显示了有希望的结果,通过使用条件概率测试成功地识别了许多无效的维护描述标签。该过程有可能减少清理国防部维护数据记录所需的人工工作量,并为国防部维护活动提供更好的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信