A. C. Oliveira, J. Groenesteijn, R. Wiegerink, K. Makinwa
{"title":"5.7 A MEMS Coriolis Mass Flow Sensor with 300 μ g/h/√Hz Resolution and ± 0.8mg/h Zero Stability","authors":"A. C. Oliveira, J. Groenesteijn, R. Wiegerink, K. Makinwa","doi":"10.1109/ISSCC42613.2021.9365946","DOIUrl":null,"url":null,"abstract":"Precision flow sensors are widely used in the pharmaceutical, food, and semiconductor industries to measure small amounts (<1 gram/hour) of liquids and gases. MEMS thermal flow sensors currently achieve state-of-the-art performance in terms of resolution, size, and power consumption [1, 3]. However, they only measure volumetric flow, and so must be calibrated for use with specific liquids [1] or gases [2, 3]. In contrast, Coriolis flow sensors measure mass flow and thus do not need calibration for specific fluids. Furthermore, their resonance frequency can be used as a measure of fluid density. These features enable significant size, cost, and complexity reductions in low-flow microfluidic systems. Although much progress has been made, miniature [4] and MEMS [5– 7] Coriolis mass flow sensors are still outperformed by their thermal counterparts, especially in terms of resolution and long-term stability.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Precision flow sensors are widely used in the pharmaceutical, food, and semiconductor industries to measure small amounts (<1 gram/hour) of liquids and gases. MEMS thermal flow sensors currently achieve state-of-the-art performance in terms of resolution, size, and power consumption [1, 3]. However, they only measure volumetric flow, and so must be calibrated for use with specific liquids [1] or gases [2, 3]. In contrast, Coriolis flow sensors measure mass flow and thus do not need calibration for specific fluids. Furthermore, their resonance frequency can be used as a measure of fluid density. These features enable significant size, cost, and complexity reductions in low-flow microfluidic systems. Although much progress has been made, miniature [4] and MEMS [5– 7] Coriolis mass flow sensors are still outperformed by their thermal counterparts, especially in terms of resolution and long-term stability.