Content-based video retrieval: does video's semantic visual feature matter?

Xiangming Mu
{"title":"Content-based video retrieval: does video's semantic visual feature matter?","authors":"Xiangming Mu","doi":"10.1145/1148170.1148314","DOIUrl":null,"url":null,"abstract":"A new shot level video browsing method based on semantic visual features (e.g., car, mountain, and fire) is proposed to facilitate content-based retrieval. The video's binary semantic feature vector is utilized to calculate the score of similarity between two shot keyframes. The score is then used to browse the \"similar\" keyframes in terms of semantic visual features. A pilot user study was conducted to better understand users' behaviors in video retrieval context. Three video retrieval and browsing systems are compared: temporal neighbor, semantic visual feature, and fused browsing system. The initial results indicated that the semantic visual feature browsing was effective and efficient for Visual Centric tasks, but not for Non-visual Centric tasks.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A new shot level video browsing method based on semantic visual features (e.g., car, mountain, and fire) is proposed to facilitate content-based retrieval. The video's binary semantic feature vector is utilized to calculate the score of similarity between two shot keyframes. The score is then used to browse the "similar" keyframes in terms of semantic visual features. A pilot user study was conducted to better understand users' behaviors in video retrieval context. Three video retrieval and browsing systems are compared: temporal neighbor, semantic visual feature, and fused browsing system. The initial results indicated that the semantic visual feature browsing was effective and efficient for Visual Centric tasks, but not for Non-visual Centric tasks.
基于内容的视频检索:视频的语义视觉特征重要吗?
为了便于基于内容的检索,提出了一种基于语义视觉特征(如车、山、火)的镜头级视频浏览方法。利用视频的二值语义特征向量计算两个镜头关键帧之间的相似度。然后使用分数来浏览语义视觉特征方面的“相似”关键帧。为了更好地了解视频检索环境下的用户行为,进行了一项试点用户研究。比较了三种视频检索和浏览系统:时间邻居系统、语义视觉特征系统和融合浏览系统。初步结果表明,语义视觉特征浏览在视觉中心任务中是有效的,而在非视觉中心任务中则不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信