Lexuan Sun, Xueliang Liu, Zhenzhen Hu, Richang Hong
{"title":"WFN-PSC: weighted-fusion network with poly-scale convolution for image dehazing","authors":"Lexuan Sun, Xueliang Liu, Zhenzhen Hu, Richang Hong","doi":"10.1145/3444685.3446292","DOIUrl":null,"url":null,"abstract":"Image dehazing is a fundamental task for the computer vision and multimedia and usually in the face of the challenge from two aspects, i) the uneven distribution of arbitrary haze and ii) the distortion of image pixels caused by the hazed image. In this paper, we propose an end-to-end trainable framework, named Weighted-Fusion Network with Poly-Scale Convolution (WFN-PSC), to address these dehazing issues. The proposed method is designed based on the Poly-Scale Convolution (PSConv). It can extract the image feature from different scales without upsampling and downsampled, which avoids the image distortion. Beyond this, we design the spatial and channel weighted-fusion modules to make the WFN-PSC model focus on the hard dehazing parts of image from two dimensions. Specifically, we design three Part Architectures followed by the channel weighted-fusion module. Each Part Architecture consists of three PSConv residual blocks and a spatial weighted-fusion module. The experiments on the benchmark demonstrate the dehazing effectiveness of the proposed method. Furthermore, considering that image dehazing is a low-level task in the computer vision, we evaluate the dehazed image on the object detection task and the results show that the proposed method can be a good pre-processing to assist the high-level computer vision task.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Image dehazing is a fundamental task for the computer vision and multimedia and usually in the face of the challenge from two aspects, i) the uneven distribution of arbitrary haze and ii) the distortion of image pixels caused by the hazed image. In this paper, we propose an end-to-end trainable framework, named Weighted-Fusion Network with Poly-Scale Convolution (WFN-PSC), to address these dehazing issues. The proposed method is designed based on the Poly-Scale Convolution (PSConv). It can extract the image feature from different scales without upsampling and downsampled, which avoids the image distortion. Beyond this, we design the spatial and channel weighted-fusion modules to make the WFN-PSC model focus on the hard dehazing parts of image from two dimensions. Specifically, we design three Part Architectures followed by the channel weighted-fusion module. Each Part Architecture consists of three PSConv residual blocks and a spatial weighted-fusion module. The experiments on the benchmark demonstrate the dehazing effectiveness of the proposed method. Furthermore, considering that image dehazing is a low-level task in the computer vision, we evaluate the dehazed image on the object detection task and the results show that the proposed method can be a good pre-processing to assist the high-level computer vision task.