RODD: Robust Outlier Detection in Data Cubes

Lara Kuhlmann, Daniel Wilmes, Emmanuel Müller, M. Pauly, Daniel Horn
{"title":"RODD: Robust Outlier Detection in Data Cubes","authors":"Lara Kuhlmann, Daniel Wilmes, Emmanuel Müller, M. Pauly, Daniel Horn","doi":"10.48550/arXiv.2303.08193","DOIUrl":null,"url":null,"abstract":"Data cubes are multidimensional databases, often built from several separate databases, that serve as flexible basis for data analysis. Surprisingly, outlier detection on data cubes has not yet been treated extensively. In this work, we provide the first framework to evaluate robust outlier detection methods in data cubes (RODD). We introduce a novel random forest-based outlier detection approach (RODD-RF) and compare it with more traditional methods based on robust location estimators. We propose a general type of test data and examine all methods in a simulation study. Moreover, we apply ROOD-RF to real world data. The results show that RODD-RF can lead to improved outlier detection.","PeriodicalId":184981,"journal":{"name":"International Conference on Data Warehousing and Knowledge Discovery","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Data Warehousing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.08193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data cubes are multidimensional databases, often built from several separate databases, that serve as flexible basis for data analysis. Surprisingly, outlier detection on data cubes has not yet been treated extensively. In this work, we provide the first framework to evaluate robust outlier detection methods in data cubes (RODD). We introduce a novel random forest-based outlier detection approach (RODD-RF) and compare it with more traditional methods based on robust location estimators. We propose a general type of test data and examine all methods in a simulation study. Moreover, we apply ROOD-RF to real world data. The results show that RODD-RF can lead to improved outlier detection.
RODD:数据立方体中的鲁棒异常点检测
多维数据集是多维数据库,通常由几个独立的数据库构建而成,可作为数据分析的灵活基础。令人惊讶的是,数据集上的离群值检测尚未得到广泛的处理。在这项工作中,我们提供了第一个框架来评估数据立方体(RODD)中的鲁棒异常值检测方法。我们引入了一种新的基于随机森林的离群点检测方法(RODD-RF),并将其与基于鲁棒位置估计的传统方法进行了比较。我们提出了一种通用类型的测试数据,并在模拟研究中检验了所有方法。此外,我们将ROOD-RF应用于真实世界的数据。结果表明,rdd - rf可以提高离群值的检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信