Evaluation of Splitting-Up Conjugate Gradient Method on GPUs

A. Wakatani
{"title":"Evaluation of Splitting-Up Conjugate Gradient Method on GPUs","authors":"A. Wakatani","doi":"10.1109/PDP.2016.9","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of a preconditioned CG (Conjugate Gradient) method on GPUs and evaluates the performance compared with CPUs. Our CG method utilizes SP (Splitting-Up) preconditioner, which is suitable for parallel processing because other dimensions except for one dimension are independent. In order to enhance the memory bandwidth to the global memory of GPUs, our implementation utilizes a pseudo matrix transposition before and after a tridiagonal matrix solver, which results in coalesced memory accesses. In addition, the number of pseudo matrix transpositions can be reduced to only one by using a rotation configuration technique. By these techniques, the speedups of our approach can be enhanced by up to 102.2%.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the implementation of a preconditioned CG (Conjugate Gradient) method on GPUs and evaluates the performance compared with CPUs. Our CG method utilizes SP (Splitting-Up) preconditioner, which is suitable for parallel processing because other dimensions except for one dimension are independent. In order to enhance the memory bandwidth to the global memory of GPUs, our implementation utilizes a pseudo matrix transposition before and after a tridiagonal matrix solver, which results in coalesced memory accesses. In addition, the number of pseudo matrix transpositions can be reduced to only one by using a rotation configuration technique. By these techniques, the speedups of our approach can be enhanced by up to 102.2%.
gpu上拆分共轭梯度法的评价
本文描述了一种预置CG(共轭梯度)方法在gpu上的实现,并与cpu进行了性能比较。我们的CG方法利用SP (split - up)预条件,由于除一个维度外其他维度是独立的,因此适合并行处理。为了提高gpu全局内存的内存带宽,我们的实现在三对角矩阵求解器之前和之后使用伪矩阵转置,从而导致合并内存访问。此外,利用旋转组态技术可以将伪矩阵的转置次数减少到1次。通过这些技术,我们的方法的加速可以提高102.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信