{"title":"The complexity of subtype entailment for simple types","authors":"F. Henglein, J. Rehof","doi":"10.1109/LICS.1997.614961","DOIUrl":null,"url":null,"abstract":"A subtyping /spl tau//spl les//spl tau/' is entailed by a set of subtyping constraints C, written C |=/spl tau//spl les//spl tau/', if every valuation (mapping of type variables to ground types) that satisfies C also satisfies /spl tau//spl les//spl tau/'. We study the complexity of subtype entailment for simple types over lattices of base types. We show that: deciding C |=/spl tau//spl les//spl tau/' is coNP-complete; deciding C |=/spl alpha//spl les//spl beta/ for consistent, atomic C and /spl alpha/, /spl beta/ atomic can be done in linear time. The structural lower (coNP-hardness) and upper (membership in coNP) bounds as well as the optimal algorithm for atomic entailment are new. The coNP-hardness result indicates that entailment is strictly harder than satisfiability, which is known to be in PTIME for lattices of base types. The proof of coNP-completeness gives an improved algorithm for deciding entailment and puts a precise complexity-theoretic marker on the intuitive \"exponential explosion\" in the algorithm. Central to our results is a novel characterization of C |=/spl alpha//spl les//spl beta/ for atomic, consistent C. This is the basis for correctness of the linear-time algorithm as well as a complete axiomatization of C |=/spl alpha//spl les//spl beta/ for atomic C by extending the usual proof rules for subtype inference. It also incorporates the fundamental insight for understanding the structural complexity bounds in the general case.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1997.614961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
A subtyping /spl tau//spl les//spl tau/' is entailed by a set of subtyping constraints C, written C |=/spl tau//spl les//spl tau/', if every valuation (mapping of type variables to ground types) that satisfies C also satisfies /spl tau//spl les//spl tau/'. We study the complexity of subtype entailment for simple types over lattices of base types. We show that: deciding C |=/spl tau//spl les//spl tau/' is coNP-complete; deciding C |=/spl alpha//spl les//spl beta/ for consistent, atomic C and /spl alpha/, /spl beta/ atomic can be done in linear time. The structural lower (coNP-hardness) and upper (membership in coNP) bounds as well as the optimal algorithm for atomic entailment are new. The coNP-hardness result indicates that entailment is strictly harder than satisfiability, which is known to be in PTIME for lattices of base types. The proof of coNP-completeness gives an improved algorithm for deciding entailment and puts a precise complexity-theoretic marker on the intuitive "exponential explosion" in the algorithm. Central to our results is a novel characterization of C |=/spl alpha//spl les//spl beta/ for atomic, consistent C. This is the basis for correctness of the linear-time algorithm as well as a complete axiomatization of C |=/spl alpha//spl les//spl beta/ for atomic C by extending the usual proof rules for subtype inference. It also incorporates the fundamental insight for understanding the structural complexity bounds in the general case.