Shared dataset on natural human-computer interaction to support continuous authentication research

Chris Murphy, Jiaju Huang, Daqing Hou, S. Schuckers
{"title":"Shared dataset on natural human-computer interaction to support continuous authentication research","authors":"Chris Murphy, Jiaju Huang, Daqing Hou, S. Schuckers","doi":"10.1109/BTAS.2017.8272738","DOIUrl":null,"url":null,"abstract":"Conventional one-stop authentication of a computer terminal takes place at a user's initial sign-on. In contrast, continuous authentication protects against the case where an intruder takes over an authenticated terminal or simply has access to sign-on credentials. Behavioral biometrics has had some success in providing continuous authentication without requiring additional hardware. However, further advancement requires benchmarking existing algorithms against large, shared datasets. To this end, we provide a novel large dataset that captures not only keystrokes, but also mouse events and active programs. Our dataset is collected using passive logging software to monitor user interactions with the mouse, keyboard, and software programs. Data was collected from 103 users in a completely uncontrolled, natural setting, over a time span of 2.5 years. We apply Gunetti & Picardi's algorithm, a state-of-the-art algorithm in free text keystroke dynamics, as an initial benchmarkfor the new dataset.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Conventional one-stop authentication of a computer terminal takes place at a user's initial sign-on. In contrast, continuous authentication protects against the case where an intruder takes over an authenticated terminal or simply has access to sign-on credentials. Behavioral biometrics has had some success in providing continuous authentication without requiring additional hardware. However, further advancement requires benchmarking existing algorithms against large, shared datasets. To this end, we provide a novel large dataset that captures not only keystrokes, but also mouse events and active programs. Our dataset is collected using passive logging software to monitor user interactions with the mouse, keyboard, and software programs. Data was collected from 103 users in a completely uncontrolled, natural setting, over a time span of 2.5 years. We apply Gunetti & Picardi's algorithm, a state-of-the-art algorithm in free text keystroke dynamics, as an initial benchmarkfor the new dataset.
自然人机交互共享数据集,支持持续认证研究
计算机终端的传统一站式认证在用户首次登录时进行。相反,连续身份验证可以防止入侵者接管经过身份验证的终端或仅仅访问登录凭据。行为生物识别技术在不需要额外硬件的情况下提供连续身份验证方面取得了一些成功。然而,进一步的进步需要针对大型共享数据集对现有算法进行基准测试。为此,我们提供了一个新的大型数据集,不仅可以捕获击键,还可以捕获鼠标事件和活动程序。我们的数据集是使用被动日志软件收集的,用于监视用户与鼠标、键盘和软件程序的交互。在2.5年的时间里,在完全不受控制的自然环境中收集了103名用户的数据。我们应用Gunetti & Picardi算法,这是一种最先进的自由文本击键动力学算法,作为新数据集的初始基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信