Realistic image composite with best-buddy prior of natural image patches

Y. Wang, Fan Zhong, Xiangyu Sun, Xueying Qin
{"title":"Realistic image composite with best-buddy prior of natural image patches","authors":"Y. Wang, Fan Zhong, Xiangyu Sun, Xueying Qin","doi":"10.1109/ICIP.2017.8296687","DOIUrl":null,"url":null,"abstract":"Realistic image composite requires the appearance of foreground and background layers to be consistent. This is difficult to achieve because the foreground and the background may be taken from very different environments. This paper proposes a novel composite adjustment method that can harmonize appearance of different composite layers. We introduce the Best-Buddy Prior (BBP), which is a novel compact representations of the joint co-occurrence distribution of natural image patches. BBP can be learned from unlabelled images given only the unsupervised regional segmentation. The most-probable adjustment of foreground can be estimated efficiently in the BBP space as the shift vector to the local maximum of density function. Both qualitative and quantitative evaluations show that our method outperforms previous composite adjustment methods.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Realistic image composite requires the appearance of foreground and background layers to be consistent. This is difficult to achieve because the foreground and the background may be taken from very different environments. This paper proposes a novel composite adjustment method that can harmonize appearance of different composite layers. We introduce the Best-Buddy Prior (BBP), which is a novel compact representations of the joint co-occurrence distribution of natural image patches. BBP can be learned from unlabelled images given only the unsupervised regional segmentation. The most-probable adjustment of foreground can be estimated efficiently in the BBP space as the shift vector to the local maximum of density function. Both qualitative and quantitative evaluations show that our method outperforms previous composite adjustment methods.
真实图像合成与最佳伙伴先验的自然图像补丁
逼真的图像合成要求前景层和背景层的外观保持一致。这很难实现,因为前景和背景可能取自非常不同的环境。本文提出了一种新的复合平差方法,可以使不同复合层的外观协调一致。我们引入了Best-Buddy Prior (BBP),它是自然图像斑块联合共现分布的一种新颖的紧凑表示。BBP可以从未标记的图像中学习,只给出无监督的区域分割。在BBP空间中,最可能的前景调整可以作为密度函数的局部最大值的移位向量有效地估计出来。定性和定量评价表明,该方法优于以往的综合调整方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信