Simple, optimal, and robust random access

Amir-Hamed Mohsenian-Rad, Jianwei Huang, M. Chiang, V. Wong
{"title":"Simple, optimal, and robust random access","authors":"Amir-Hamed Mohsenian-Rad, Jianwei Huang, M. Chiang, V. Wong","doi":"10.1109/MILCOM.2008.4753315","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two distributed contention-based medium access control (MAC) algorithms to solve a network utility maximization (NUM) problem in wireless ad hoc networks. Most of the previous NUM-based random access algorithms have one or more of the following performance bottlenecks: (1) extensive signaling among nodes, (2) synchronous updates of contention probabilities, (3) small update stepsizes to ensure convergence but with typically slow speed, and (4) supporting a limited range of utility functions under which the NUM is shown to be convex. Our algorithms overcome these bottlenecks in all four aspects. First, only limited message passing among nodes is required. Second, fully asynchronous updates of contention probabilities are allowed. Furthermore, our algorithms are robust to arbitrary large message passing delays and message loss. Third, we do not utilize any stepsize during updates, thus our algorithms can achieve faster convergence. Finally, our algorithms have provable convergence, optimality, and robustness properties under a wider range of utility functions, even if the NUM problem is non-convex.","PeriodicalId":434891,"journal":{"name":"MILCOM 2008 - 2008 IEEE Military Communications Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2008 - 2008 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2008.4753315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose two distributed contention-based medium access control (MAC) algorithms to solve a network utility maximization (NUM) problem in wireless ad hoc networks. Most of the previous NUM-based random access algorithms have one or more of the following performance bottlenecks: (1) extensive signaling among nodes, (2) synchronous updates of contention probabilities, (3) small update stepsizes to ensure convergence but with typically slow speed, and (4) supporting a limited range of utility functions under which the NUM is shown to be convex. Our algorithms overcome these bottlenecks in all four aspects. First, only limited message passing among nodes is required. Second, fully asynchronous updates of contention probabilities are allowed. Furthermore, our algorithms are robust to arbitrary large message passing delays and message loss. Third, we do not utilize any stepsize during updates, thus our algorithms can achieve faster convergence. Finally, our algorithms have provable convergence, optimality, and robustness properties under a wider range of utility functions, even if the NUM problem is non-convex.
简单、最优、健壮的随机访问
本文提出了两种基于分布式竞争的介质访问控制(MAC)算法来解决无线自组织网络中的网络效用最大化问题。以前大多数基于NUM的随机访问算法都有以下一个或多个性能瓶颈:(1)节点之间广泛的信令,(2)争用概率的同步更新,(3)较小的更新步长以确保收敛,但通常速度较慢,以及(4)支持有限范围的效用函数,其中NUM显示为凸。我们的算法在这四个方面都克服了这些瓶颈。首先,只需要在节点之间进行有限的消息传递。其次,允许对争用概率进行完全异步更新。此外,我们的算法对任意大的消息传递延迟和消息丢失具有鲁棒性。第三,我们在更新过程中不使用任何步长,因此我们的算法可以实现更快的收敛。最后,我们的算法在更广泛的效用函数下具有可证明的收敛性、最优性和鲁棒性,即使NUM问题是非凸的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信