Amir-Hamed Mohsenian-Rad, Jianwei Huang, M. Chiang, V. Wong
{"title":"Simple, optimal, and robust random access","authors":"Amir-Hamed Mohsenian-Rad, Jianwei Huang, M. Chiang, V. Wong","doi":"10.1109/MILCOM.2008.4753315","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two distributed contention-based medium access control (MAC) algorithms to solve a network utility maximization (NUM) problem in wireless ad hoc networks. Most of the previous NUM-based random access algorithms have one or more of the following performance bottlenecks: (1) extensive signaling among nodes, (2) synchronous updates of contention probabilities, (3) small update stepsizes to ensure convergence but with typically slow speed, and (4) supporting a limited range of utility functions under which the NUM is shown to be convex. Our algorithms overcome these bottlenecks in all four aspects. First, only limited message passing among nodes is required. Second, fully asynchronous updates of contention probabilities are allowed. Furthermore, our algorithms are robust to arbitrary large message passing delays and message loss. Third, we do not utilize any stepsize during updates, thus our algorithms can achieve faster convergence. Finally, our algorithms have provable convergence, optimality, and robustness properties under a wider range of utility functions, even if the NUM problem is non-convex.","PeriodicalId":434891,"journal":{"name":"MILCOM 2008 - 2008 IEEE Military Communications Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2008 - 2008 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2008.4753315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose two distributed contention-based medium access control (MAC) algorithms to solve a network utility maximization (NUM) problem in wireless ad hoc networks. Most of the previous NUM-based random access algorithms have one or more of the following performance bottlenecks: (1) extensive signaling among nodes, (2) synchronous updates of contention probabilities, (3) small update stepsizes to ensure convergence but with typically slow speed, and (4) supporting a limited range of utility functions under which the NUM is shown to be convex. Our algorithms overcome these bottlenecks in all four aspects. First, only limited message passing among nodes is required. Second, fully asynchronous updates of contention probabilities are allowed. Furthermore, our algorithms are robust to arbitrary large message passing delays and message loss. Third, we do not utilize any stepsize during updates, thus our algorithms can achieve faster convergence. Finally, our algorithms have provable convergence, optimality, and robustness properties under a wider range of utility functions, even if the NUM problem is non-convex.