A wavelet algorithm for zoom-in tomography

M. Langer, F. Peyrin
{"title":"A wavelet algorithm for zoom-in tomography","authors":"M. Langer, F. Peyrin","doi":"10.1109/ISBI.2010.5490103","DOIUrl":null,"url":null,"abstract":"In zoom-in tomography, the aim is to image a region of interest lying partially or fully within the imaged object, using a high resolution tomographic scan covering only the ROI, and a low resolution scan covering the whole object. We analyze the problem from a multiresolution point of view and propose an algorithm for combining the two data sets using the discrete wavelet transform and the Haar wavelet. We compare the proposed algorithm to a previously reported method that involves padding of the high resolution data with a supersampled version of the low resolution data, to zero padding and edge extension, using synthetic data sets. We show that the proposed algorithm is insensitive to offsets between the two data sets, but that it is slightly more sensitive to noise.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In zoom-in tomography, the aim is to image a region of interest lying partially or fully within the imaged object, using a high resolution tomographic scan covering only the ROI, and a low resolution scan covering the whole object. We analyze the problem from a multiresolution point of view and propose an algorithm for combining the two data sets using the discrete wavelet transform and the Haar wavelet. We compare the proposed algorithm to a previously reported method that involves padding of the high resolution data with a supersampled version of the low resolution data, to zero padding and edge extension, using synthetic data sets. We show that the proposed algorithm is insensitive to offsets between the two data sets, but that it is slightly more sensitive to noise.
放大层析成像的小波算法
在放大层析成像中,目的是成像部分或全部位于成像对象内的感兴趣区域,使用仅覆盖ROI的高分辨率层析扫描和覆盖整个对象的低分辨率扫描。我们从多分辨率的角度分析了这一问题,并提出了一种利用离散小波变换和Haar小波组合两种数据集的算法。我们将提出的算法与先前报道的方法进行了比较,该方法涉及使用合成数据集使用低分辨率数据的超采样版本填充高分辨率数据,到零填充和边缘扩展。我们证明了所提出的算法对两个数据集之间的偏移不敏感,但对噪声稍微敏感一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信