Spectrum-blind sampling and compressive sensing for continuous-index signals

Y. Bresler
{"title":"Spectrum-blind sampling and compressive sensing for continuous-index signals","authors":"Y. Bresler","doi":"10.1109/ITA.2008.4601017","DOIUrl":null,"url":null,"abstract":"Spectrum-blind sampling (SBS), proposed in the mid-90psilas, is a sensing technique enabling minimum-rate sampling and reconstruction of signals with unknown but sparse spectra. SBS is applicable to continuous or discrete-index signals, finite or infinite length, in one or more dimensions. We revisit SBS and explore its relationship to compressive sensing (CS). On the one hand, recent results in CS provide efficient reconstruction techniques for SBS. On the other hand, SBS provides efficient structured designs for blind, non-adaptive sensing of spectrum-sparse signals with minimal sampling requirements, and formulation leading to reconstruction cost only linear in the amount of data, and robustness against noise.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

Spectrum-blind sampling (SBS), proposed in the mid-90psilas, is a sensing technique enabling minimum-rate sampling and reconstruction of signals with unknown but sparse spectra. SBS is applicable to continuous or discrete-index signals, finite or infinite length, in one or more dimensions. We revisit SBS and explore its relationship to compressive sensing (CS). On the one hand, recent results in CS provide efficient reconstruction techniques for SBS. On the other hand, SBS provides efficient structured designs for blind, non-adaptive sensing of spectrum-sparse signals with minimal sampling requirements, and formulation leading to reconstruction cost only linear in the amount of data, and robustness against noise.
连续指数信号的频谱盲采样和压缩感知
谱盲采样(SBS)是上世纪90年代中期提出的一种传感技术,能够对未知但稀疏的信号进行最小速率采样和重建。SBS适用于一个或多个维度的连续或离散指标信号,有限或无限长度。我们重新审视SBS并探讨其与压缩感知(CS)的关系。一方面,最近的研究成果为SBS提供了有效的重建技术。另一方面,SBS以最小的采样要求为频谱稀疏信号的盲、非自适应感知提供了有效的结构化设计,其公式导致重构成本仅为数据量线性,并且对噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信