Greedy Genetic Algorithm for the Data Aggregator Positioning Problem in Smart Grids

Sami Nasser Lauar, Mário Mestria
{"title":"Greedy Genetic Algorithm for the Data Aggregator Positioning Problem in Smart Grids","authors":"Sami Nasser Lauar, Mário Mestria","doi":"10.4114/intartif.vol24iss68pp123-137","DOIUrl":null,"url":null,"abstract":"In this work, we present a metaheuristic based on the genetic and greedy algorithms to solve an application of the set covering problem (SCP), the data aggregator positioning in smart grids. The GGH (Greedy Genetic Hybrid) is structured as a genetic algorithm, but it has many modifications compared to the classic version. At the mutation step, only columns included in the solution can suffer mutation and be removed. At the recombination step, only columns from the parent’s solutions are available to generate the offspring. Moreover, the greedy algorithm generates the initial population, reconstructs solutions after mutation, and generates new solutions from the recombination step. Computational results using OR-Library problems showed that the GGH reached optimal solutions for 40 instances in a total of 75 and, in the other instances, obtained good and promising values, presenting a medium gap of 1,761%.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol24iss68pp123-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a metaheuristic based on the genetic and greedy algorithms to solve an application of the set covering problem (SCP), the data aggregator positioning in smart grids. The GGH (Greedy Genetic Hybrid) is structured as a genetic algorithm, but it has many modifications compared to the classic version. At the mutation step, only columns included in the solution can suffer mutation and be removed. At the recombination step, only columns from the parent’s solutions are available to generate the offspring. Moreover, the greedy algorithm generates the initial population, reconstructs solutions after mutation, and generates new solutions from the recombination step. Computational results using OR-Library problems showed that the GGH reached optimal solutions for 40 instances in a total of 75 and, in the other instances, obtained good and promising values, presenting a medium gap of 1,761%.
基于贪婪遗传算法的智能电网数据聚合器定位问题
在这项工作中,我们提出了一种基于遗传和贪婪算法的元启发式算法来解决集覆盖问题(SCP)的应用,即数据聚合器在智能电网中的定位。GGH(贪心遗传混合)是一种遗传算法,但与经典版本相比,它有许多修改。在突变步骤中,只有溶液中包含的列才能发生突变并被移除。在重组步骤中,只有来自父解的列可用于生成后代。贪婪算法生成初始种群,突变后重建解,并从重组步骤生成新解。使用OR-Library问题的计算结果表明,在总共75个实例中,GGH在40个实例中获得了最优解,在其他实例中获得了良好且有希望的值,中间差距为1,761%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信