Yang Zhang, Yue Shen, Dong Wang, Jinjie Gu, Guannan Zhang
{"title":"Connecting Unseen Domains: Cross-Domain Invariant Learning in Recommendation","authors":"Yang Zhang, Yue Shen, Dong Wang, Jinjie Gu, Guannan Zhang","doi":"10.1145/3539618.3591965","DOIUrl":null,"url":null,"abstract":"As web applications continue to expand and diversify their services, user interactions exist in different scenarios. To leverage this wealth of information, cross-domain recommendation (CDR) has gained significant attention in recent years. However, existing CDR approaches mostly focus on information transfer between observed domains, with little attention paid to generalizing to unseen domains. Although recent research on invariant learning can help for the purpose of generalization, relying only on invariant preference may be overly conservative and result in mediocre performance when the unseen domain shifts slightly. In this paper, we present a novel framework that considers both CDR and domain generalization through a united causal invariant view. We assume that user interactions are determined by domain-invariant preference and domain-specific preference. The proposed approach differentiates the invariant preference and the specific preference from observational behaviors in a way of adversarial learning. Additionally, a novel domain routing module is designed to connect unseen domains to observed domains. Extensive experiments on public and industry datasets have proved the effectiveness of the proposed approach under both CDR and domain generalization settings.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As web applications continue to expand and diversify their services, user interactions exist in different scenarios. To leverage this wealth of information, cross-domain recommendation (CDR) has gained significant attention in recent years. However, existing CDR approaches mostly focus on information transfer between observed domains, with little attention paid to generalizing to unseen domains. Although recent research on invariant learning can help for the purpose of generalization, relying only on invariant preference may be overly conservative and result in mediocre performance when the unseen domain shifts slightly. In this paper, we present a novel framework that considers both CDR and domain generalization through a united causal invariant view. We assume that user interactions are determined by domain-invariant preference and domain-specific preference. The proposed approach differentiates the invariant preference and the specific preference from observational behaviors in a way of adversarial learning. Additionally, a novel domain routing module is designed to connect unseen domains to observed domains. Extensive experiments on public and industry datasets have proved the effectiveness of the proposed approach under both CDR and domain generalization settings.