Andrea Borghesi, Antonio Libri, L. Benini, Andrea Bartolini
{"title":"Online Anomaly Detection in HPC Systems","authors":"Andrea Borghesi, Antonio Libri, L. Benini, Andrea Bartolini","doi":"10.1109/AICAS.2019.8771527","DOIUrl":null,"url":null,"abstract":"Reliability is a cumbersome problem in High Performance Computing Systems and Data Centers evolution. During operation, several types of fault conditions or anomalies can arise, ranging from malfunctioning hardware to improper configurations or imperfect software. Currently, system administrator and final users have to discover it manually. Clearly this approach does not scale to large scale supercomputers and facilities: automated methods to detect faults and unhealthy conditions is needed. Our method uses a type of neural network called autoncoder trained to learn the normal behavior of a real, in-production HPC system and it is deployed on the edge of each computing node. We obtain a very good accuracy (values ranging between 90% and 95%) and we also demonstrate that the approach can be deployed on the supercomputer nodes without negatively affecting the computing units performance.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Reliability is a cumbersome problem in High Performance Computing Systems and Data Centers evolution. During operation, several types of fault conditions or anomalies can arise, ranging from malfunctioning hardware to improper configurations or imperfect software. Currently, system administrator and final users have to discover it manually. Clearly this approach does not scale to large scale supercomputers and facilities: automated methods to detect faults and unhealthy conditions is needed. Our method uses a type of neural network called autoncoder trained to learn the normal behavior of a real, in-production HPC system and it is deployed on the edge of each computing node. We obtain a very good accuracy (values ranging between 90% and 95%) and we also demonstrate that the approach can be deployed on the supercomputer nodes without negatively affecting the computing units performance.