Efficient Clustering-based Algorithm for Predicting File Size and Structural Similarity of Transcoded JPEG Images

S. Pigeon, S. Coulombe
{"title":"Efficient Clustering-based Algorithm for Predicting File Size and Structural Similarity of Transcoded JPEG Images","authors":"S. Pigeon, S. Coulombe","doi":"10.1109/ISM.2011.30","DOIUrl":null,"url":null,"abstract":"The problem of adapting JPEG images to satisfy constraints such as file size and resolution arises in a number of applications, from universal media access to multimedia messaging services. Visually optimized adaptation, however, commands a non-negligible computational cost which we aim to minimize using predictors. In previous works, we presented predictors and systems to achieve low-cost near-optimal adaptation of JPEG images. In this work, we propose a new approach to file size and quality prediction resulting from the Transco ding of a JPEG image subject to changes in quality factor and resolution. We show that the new predictor significantly outperforms the previously proposed solutions in accuracy.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The problem of adapting JPEG images to satisfy constraints such as file size and resolution arises in a number of applications, from universal media access to multimedia messaging services. Visually optimized adaptation, however, commands a non-negligible computational cost which we aim to minimize using predictors. In previous works, we presented predictors and systems to achieve low-cost near-optimal adaptation of JPEG images. In this work, we propose a new approach to file size and quality prediction resulting from the Transco ding of a JPEG image subject to changes in quality factor and resolution. We show that the new predictor significantly outperforms the previously proposed solutions in accuracy.
基于聚类的高效JPEG转码图像文件大小和结构相似性预测算法
调整JPEG图像以满足文件大小和分辨率等限制的问题出现在许多应用程序中,从通用媒体访问到多媒体消息传递服务。然而,视觉优化的自适应要求不可忽略的计算成本,我们的目标是使用预测器将其最小化。在之前的工作中,我们提出了预测器和系统来实现低成本的JPEG图像的近最佳自适应。在这项工作中,我们提出了一种新的方法来预测JPEG图像在质量因子和分辨率变化的情况下的文件大小和质量。我们表明,新的预测器在精度上显著优于先前提出的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信