G. Nneji, Jingye Cai, Jianhua Deng, H. Monday, E. James, Bona D. Lemessa, A. Z. Yutra, Y. B. Leta, Saifun Nahar
{"title":"COVID-19 Identification Using Deep Capsule Network: A Perspective of Super-Resolution CNN on Low-Quality CXR Images","authors":"G. Nneji, Jingye Cai, Jianhua Deng, H. Monday, E. James, Bona D. Lemessa, A. Z. Yutra, Y. B. Leta, Saifun Nahar","doi":"10.1145/3507971.3507989","DOIUrl":null,"url":null,"abstract":"Chest X-ray has become a useful method in the detection of coronavirus disease-19 (COVID-19). Due to the extreme global COVID-19 crisis, using the computerized diagnosis method for COVID-19 classification upon CXR images could significantly decrease clinician workload. We explicitly addressed the issue of low CXR image resolution by using Super-Resolution Convolutional Neural Network (SRCNN) to effectively reconstruct high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents. Then, the HRCXR images are fed into the modified capsule network to retrieve distinct features for the classification of COVID-19. We demonstrate the proposed model on a public dataset and achieve ACC of 97.3%, SEN of 97.8%, SPE of 96.9%, and AUC of 98.0%. This new conceptual framework is proposed to play a vital task in the issue facing COVID-19 and related ailments.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3507989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Chest X-ray has become a useful method in the detection of coronavirus disease-19 (COVID-19). Due to the extreme global COVID-19 crisis, using the computerized diagnosis method for COVID-19 classification upon CXR images could significantly decrease clinician workload. We explicitly addressed the issue of low CXR image resolution by using Super-Resolution Convolutional Neural Network (SRCNN) to effectively reconstruct high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents. Then, the HRCXR images are fed into the modified capsule network to retrieve distinct features for the classification of COVID-19. We demonstrate the proposed model on a public dataset and achieve ACC of 97.3%, SEN of 97.8%, SPE of 96.9%, and AUC of 98.0%. This new conceptual framework is proposed to play a vital task in the issue facing COVID-19 and related ailments.