Predicting Slaughter Weight in Pigs with Regression Tree Ensembles

A. Alsahaf, G. Azzopardi, B. Ducro, R. Veerkamp, N. Petkov
{"title":"Predicting Slaughter Weight in Pigs with Regression Tree Ensembles","authors":"A. Alsahaf, G. Azzopardi, B. Ducro, R. Veerkamp, N. Petkov","doi":"10.3233/978-1-61499-929-4-1","DOIUrl":null,"url":null,"abstract":"Domestic pigs vary in the age at which they reach slaughter weight even under the controlled conditions of modern pig farming. Early and accurate estimates of when a pig will reach slaughter weight can lead to logistic efficiency in farms. In this study, we compare four methods in predicting the age at which a pig reaches slaughter weight (120 kg). Namely, we compare the following regression tree-based ensemble methods: random forest (RF), extremely randomized trees (ET), gradient boosted machines (GBM), and XGBoost. Data from 32979 pigs is used, comprising a combination of phenotypic features and estimated breeding values (EBV). We found that the boosting ensemble methods, GBM and XGBoost, achieve lower prediction errors than the parallel ensembles methods, RF and ET. On the other hand, RF and ET have fewer parameters to tune, and perform adequately well with default parameter settings.","PeriodicalId":276901,"journal":{"name":"Applications of Intelligent Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-61499-929-4-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Domestic pigs vary in the age at which they reach slaughter weight even under the controlled conditions of modern pig farming. Early and accurate estimates of when a pig will reach slaughter weight can lead to logistic efficiency in farms. In this study, we compare four methods in predicting the age at which a pig reaches slaughter weight (120 kg). Namely, we compare the following regression tree-based ensemble methods: random forest (RF), extremely randomized trees (ET), gradient boosted machines (GBM), and XGBoost. Data from 32979 pigs is used, comprising a combination of phenotypic features and estimated breeding values (EBV). We found that the boosting ensemble methods, GBM and XGBoost, achieve lower prediction errors than the parallel ensembles methods, RF and ET. On the other hand, RF and ET have fewer parameters to tune, and perform adequately well with default parameter settings.
用回归树集合预测猪的屠宰体重
即使在现代养猪业的控制条件下,家猪达到屠宰体重的年龄也各不相同。对猪何时达到屠宰体重的早期和准确估计可以提高农场的物流效率。在这项研究中,我们比较了四种预测猪达到屠宰体重(120公斤)年龄的方法。也就是说,我们比较了以下基于回归树的集成方法:随机森林(RF)、极度随机树(ET)、梯度增强机(GBM)和XGBoost。数据来自32979头猪,包括表型特征和估计育种值(EBV)的组合。我们发现,与并行集成方法RF和ET相比,增强集成方法GBM和XGBoost实现了更低的预测误差。另一方面,RF和ET需要调整的参数较少,并且在默认参数设置下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信