On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases

Katsusuke Nabeshima, S. Tajima
{"title":"On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases","authors":"Katsusuke Nabeshima, S. Tajima","doi":"10.1145/2608628.2608639","DOIUrl":null,"url":null,"abstract":"A new algorithm is given for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities. The essential point of the proposed algorithm involves Poincaré polynomials and weighted degrees. The proposed algorithm gives a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology classes. As an application, an algorithm for computing parametric standard bases of zero-dimensional ideals, is given. These algorithms work for non-parametric cases, too.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A new algorithm is given for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities. The essential point of the proposed algorithm involves Poincaré polynomials and weighted degrees. The proposed algorithm gives a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology classes. As an application, an algorithm for computing parametric standard bases of zero-dimensional ideals, is given. These algorithms work for non-parametric cases, too.
半拟齐次奇异点和标准基下参数局部上同类的有效计算算法
给出了一种计算半拟齐次奇异点的参数局部上同类的新算法。该算法的核心涉及到poincarcarr多项式和加权度。该算法根据参数局部上同类的结构对参数空间进行了适当的分解。作为应用,给出了一种计算零维理想参数标准基的算法。这些算法也适用于非参数情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信