Encoding of multivariate stimuli with MIMO neural circuits

A. Lazar, E. Pnevmatikakis
{"title":"Encoding of multivariate stimuli with MIMO neural circuits","authors":"A. Lazar, E. Pnevmatikakis","doi":"10.1109/ISIT.2011.6034277","DOIUrl":null,"url":null,"abstract":"We present a general MIMO neural circuit architecture for the encoding of multivariate stimuli in the time domain. The signals belong to the finite space of vector-valued trigonometric polynomials. They are filtered with a linear time-invariant kernel and then processed by a population of leaky integrate-and-fire neurons. We present formal, intuitive, necessary conditions for faithful encoding and provide a perfect recovery (decoding) algorithm. We extend these results to multivariate product spaces and apply them to video encoding with MIMO neural circuits. We demonstrate that our encoding circuits can serve as measurement devices for compressed sensing of frequency sparse signals. Finally, we provide necessary spike density conditions for the decoding of infinite-dimensional vector valued bandlimited functions encoded with MIMO neural circuits.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a general MIMO neural circuit architecture for the encoding of multivariate stimuli in the time domain. The signals belong to the finite space of vector-valued trigonometric polynomials. They are filtered with a linear time-invariant kernel and then processed by a population of leaky integrate-and-fire neurons. We present formal, intuitive, necessary conditions for faithful encoding and provide a perfect recovery (decoding) algorithm. We extend these results to multivariate product spaces and apply them to video encoding with MIMO neural circuits. We demonstrate that our encoding circuits can serve as measurement devices for compressed sensing of frequency sparse signals. Finally, we provide necessary spike density conditions for the decoding of infinite-dimensional vector valued bandlimited functions encoded with MIMO neural circuits.
用多输入多输出神经回路编码多元刺激
我们提出了一种通用的MIMO神经电路结构,用于在时域上对多变量刺激进行编码。信号属于向量值三角多项式的有限空间。它们用线性时不变核进行滤波,然后由一群泄漏的积分-触发神经元进行处理。我们提出了可靠编码的形式化、直观的必要条件,并提供了一个完美的恢复(解码)算法。我们将这些结果扩展到多元积空间,并将其应用于MIMO神经电路的视频编码。我们证明了我们的编码电路可以作为频率稀疏信号压缩感知的测量设备。最后,我们提供了用MIMO神经电路编码的无限维向量值带限函数的解码所需的尖峰密度条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信